ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous electronic shot noise in resonant tunneling junctions

71   0   0.0 ( 0 )
 نشر من قبل Dvira Segal
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the behavior of shot noise in resonant tunneling junctions far from equilibrium. Quantum-coherent elastic charge transport can be characterized by a transmission function, that is the probability for an incoming electron at a given energy to tunnel through a potential barrier. In systems such as quantum point contacts, electronic shot noise is oftentimes calculated based on a constant (energy independent) transmission probability, a good approximation at low temperatures and under a small bias voltage. Here, we generalize these investigations to far from equilibrium settings by evaluating the contributions of electronic resonances to the electronic current noise. Our study extends canonical expressions for the voltage-activated shot noise and the recently discovered delta-T noise to the far from equilibrium regime, when a high bias voltage or a temperature difference is applied. In particular, when the Fermi energy is located on the shoulder of a broad resonance, we arrive at a formula for the shot noise revealing anomalous-nonlinear behavior at high bias voltage.



قيم البحث

اقرأ أيضاً

Fluctuations pose fundamental limitations in making sensitive measurements, yet at the same time, noise unravels properties that are inaccessible at the level of the averaged signal. In electronic devices, shot noise arises from the discrete nature o f charge carriers and it increases linearly with the applied voltage according to the celebrated Schottky formula. Nonetheless, measurements of shot noise in atomic-scale junctions at high voltage reveal significant nonlinear (anomalous) behavior, which varies from sample to sample, and has no specific trend. Here, we provide a viable, unifying explanation for these diverse observations based on the theory of quantum coherent transport. Our formula for the anomalous shot noise relies on---and allows us to resolve---two key characteristics of a conducting junction: The structure of the transmission function at the vicinity of the Fermi energy and the asymmetry of the bias voltage drop at the contacts. We tested our theory on high voltage shot noise measurements on Au atomic scale junctions and demonstrated a quantitative agreement, recovering both the enhancement and suppression of shot noise as observed in different junctions. The good theory-experiment correspondence supports our modelling and emphasizes that the asymmetry of the bias drop on the contacts is a key factor in nanoscale electronic transport, which may substantially impact electronic signals even in incomplex structures.
193 - A.K.M. Newaz , W. Song , Y. Lin 2004
We have found experimentally that the shot noise in InAlAs-InGaAs-InAlAs Triple-Barrier Resonant-Tunneling Diodes (TBRTD) is reduced over the 2eI Poissonian value whenever their differential conductance is positive, and is enhanced over 2eI when the differential conductance is negative. This behavior, although qualitatively similar to that found in double-barrier diodes, differs from it in important details. In TBRTDs the noise reduction is considerably larger than predicted by a semi-classical model, and the enhancement does not correlate with the strength of the negative differential conductance. These results suggest an incomplete understanding of the noise properties of multiple-barrier heterostructures.
We measured the shot noise in the CoFeB/MgO/CoFeB-based magnetic tunneling junctions with a high tunneling magnetoresistance ratio (over 200% at 3 K). Although the Fano factor in the anti-parallel configuration is close to unity, it is observed to be typically 0.91pm0.01 in the parallel configuration. It indicates the sub-Poissonian process of the electron tunneling in the parallel configuration due to the relevance of the spin-dependent coherent transport in the low bias regime.
Current noise is measured with a SQUID in low impedance and transparent Nb-Al-Nb j unctions of length comparable to the phase breaking length and much longer than the thermal length. The shot noise amplitude is compared with theoretical predictions o f doubled shot noise in diffusive normal/superconductor (NS) junctions due to the Andreev reflections. We discuss the heat dissipation away from the normal part through the NS interfaces. A weak applied magnetic field reduces the amplitude of the 1/f noise by a factor of two, showing that even far from equilibrium the sample is in the mesoscopic regime.
204 - R. Harris , M.W. Johnson , S. Han 2008
Macroscopic resonant tunneling between the two lowest lying states of a bistable RF-SQUID is used to characterize noise in a flux qubit. Measurements of the incoherent decay rate as a function of flux bias revealed a Gaussian shaped profile that is n ot peaked at the resonance point, but is shifted to a bias at which the initial well is higher than the target well. The r.m.s. amplitude of the noise, which is proportional to the decoherence rate 1/T_2^*, was observed to be weakly dependent on temperature below 70 mK. Analysis of these results indicates that the dominant source of low frequency (1/f) flux noise in this device is a quantum mechanical environment in thermal equilibrium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا