ﻻ يوجد ملخص باللغة العربية
Statistical complexity and Fisher-Shannon information are calculated in a problem of quantum scattering, namely the Klein tunneling across a potential barrier in graphene. The treatment of electron wave functions as masless Dirac fermions allows us to compute these statistical measures. The comparison of these magnitudes with the transmission coefficient through the barrier is performed. We show that these statistical measures take their minimum values in the situations of total transparency through the barrier, a phenomenon highly anisotropic for the Klein tunneling in graphene.
The problem of the Klein tunneling across a potential barrier in bi-layer graphene is addressed. The electron wave functions are treated as massive chiral particles. This treatment allows us to compute the statistical complexity and Fisher-Shannon in
We show that in gapped bilayer graphene, quasiparticle tunneling and the corresponding Berry phase can be controlled such that it exhibits features of single layer graphene such as Klein tunneling. The Berry phase is detected by a high-quality Fabry-
Graphene electrons feature a pair of massless Dirac cones of opposite pseudospin chirality at two valleys. Klein tunneling refers to the intriguing capability of these chiral electrons to penetrate through high and wide potential barrier. The two val
We use the Wick-rotated time-dependent supersymmetry to construct models of two-dimensional Dirac fermions in presence of an electrostatic grating. We show that there appears omnidirectional perfect transmission through the grating at specific energy
The inherent asymmetry of the electric transport in graphene is attributed to Klein tunneling across barriers defined by $textit{pn}$-interfaces between positively and negatively charged regions. By combining conductance and shot noise experiments we