ﻻ يوجد ملخص باللغة العربية
Graphene electrons feature a pair of massless Dirac cones of opposite pseudospin chirality at two valleys. Klein tunneling refers to the intriguing capability of these chiral electrons to penetrate through high and wide potential barrier. The two valleys have been treated independently in the literature, where time reversal symmetry dictates that neither the normal incidence transmission nor the angle-averaged one can have any valley polarization. Here we show that, when intervalley scattering by barrier is accounted, graphene electrons normally incident at a superlattice barrier can experience a fully valley-selective Klein tunneling, i.e. perfect transmission in one valley, and perfect reflection in the other. Intervalley backscattering creates staggered pseudospin gaps in the superlattice barrier, which, combined with the valley contrast in pseudospin chirality, determines the valley polarity of Klein tunneling. The angle averaged transmission can have a net valley polarization of 20% for a 5-period barrier, and exceed 75% for a 20-period barrier. Our finding points to an unexpected opportunity to realize valley functionalities in graphene electronics.
We use the Wick-rotated time-dependent supersymmetry to construct models of two-dimensional Dirac fermions in presence of an electrostatic grating. We show that there appears omnidirectional perfect transmission through the grating at specific energy
We show that in gapped bilayer graphene, quasiparticle tunneling and the corresponding Berry phase can be controlled such that it exhibits features of single layer graphene such as Klein tunneling. The Berry phase is detected by a high-quality Fabry-
We predict it is possible to achieve high-efficiency room-temperature spin injection from a mag- netic metal into InAs-based semiconductors using an engineered Schottky barrier based on an InAs/AlSb superlattice. The Schottky barrier with most metals
Dirac electrons in graphene have a valley degree of freedom that is being explored as a carrier of information. In that context of valleytronics one seeks to coherently manipulate the valley index. Here we show that reflection from a superlattice pot
Statistical complexity and Fisher-Shannon information are calculated in a problem of quantum scattering, namely the Klein tunneling across a potential barrier in graphene. The treatment of electron wave functions as masless Dirac fermions allows us t