ترغب بنشر مسار تعليمي؟ اضغط هنا

New IceCube data and color octet neutrino interpretation of the PeV energy events

77   0   0.0 ( 0 )
 نشر من قبل Mehmet Sahin
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف A.N. Akay




اسأل ChatGPT حول البحث

IceCube collaboration has published two papers on ultrahigh energy neutrinos observation, recently. They have used the data collected in two years in their first publication, which reveals observation of two PeV energy neutrino events. The second publication of the collaboration including more data has also confirmed main features of the former paper. In literature, various interpretations of the IceCube data have been proposed. In this study, it is shown that PeV energy neutrino events observed by the IceCube collaboration can be interpreted as resonance production of color octet neutrinos with masses in $500-800$ GeV range.

قيم البحث

اقرأ أيضاً

The IceCube Collaboration has announced the discovery of a neutrino flux in excess of the atmospheric background. Due to the steeply falling atmospheric background spectrum, events at PeV energies are most likely of extraterrestrial origin. We presen t the multiwavelength properties of the six radio brightest blazars positionally coincident with these events using contemporaneous data of the TANAMI blazar sample, including high-resolution images and spectral energy distributions. Assuming the X-ray to {gamma}-ray emission originates in the photoproduction of pions by accelerated protons, the integrated predicted neutrino luminosity of these sources is large enough to explain the two detected PeV events.
Extensions of the Standard Model with charged Higgs, having a non-negligible coupling with neutrinos, can have interesting implications vis-`{a}-vis neutrino experiments. Such models can leave their footprints in the ultra-high energy neutrino detect ors like IceCube in the form of neutrino non-standard interactions (NSIs) which can also be probed in lower energy neutrino experiments. We consider a model based on the neutrinophilic two-Higgs doublets and study its imprints in the recently reported excess neutrino events in the PeV energy bins at the IceCube. An additional signature of the model is that it also leads to sizeable NSIs. We perform a combined study of the latest IceCube data along with various other constraints arising from neutrino experiments e.g., Borexino, TEXONO, COHERENT, DUNE, and T2HK, together with the limits set by the LEP experiment, and explore the parameter space which can lead to a sizeable NSI.
The IceCube experiment has recently reported the observation of 28 high-energy (> 30 TeV) neutrino events, separated into 21 showers and 7 muon tracks, consistent with an extraterrestrial origin. In this letter we compute the compatibility of such an observation with possible combinations of neutrino flavors with relative proportion (alpha_e:alpha_mu:alpha_tau). Although the 7:21 track-to-shower ratio is naively favored for the canonical (1:1:1) at Earth, this is not true once the atmospheric muon and neutrino backgrounds are properly accounted for. We find that, for an astrophysical neutrino E^(-2) energy spectrum, (1:1:1) at Earth is disfavored at 81% C.L. If this proportion does not change, 6 more years of data would be needed to exclude (1:1:1) at Earth at 3 sigma C.L. Indeed, with the recently-released 3-year data, that flavor composition is excluded at 92% C.L. The best-fit is obtained for (1:0:0) at Earth, which cannot be achieved from any flavor ratio at sources with averaged oscillations during propagation. If confirmed, this result would suggest either a misunderstanding of the expected background events, or a misidentification of tracks as showers, or even more compellingly, some exotic physics which deviates from the standard scenario.
The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most e nergetic IceCube events. Objects like these are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. We present an analysis of neutrino emission from the six blazars using observations with the ANTARES neutrino telescope.The standard methods of the ANTARES candidate list search are applied to six years of data to search for an excess of muons --- and hence their neutrino progenitors --- from the directions of the six blazars described by the TANAMI Collaboration, and which are possibly associated with two IceCube events. Monte Carlo simulations of the detector response to both signal and background particle fluxes are used to estimate the sensitivity of this analysis for different possible source neutrino spectra. A maximum-likelihood approach, using the reconstructed energies and arrival directions of through-going muons, is used to identify events with properties consistent with a blazar origin.Both blazars predicted to be the most neutrino-bright in the TANAMI sample (1653$-$329 and 1714$-$336) have a signal flux fitted by the likelihood analysis corresponding to approximately one event. This observation is consistent with the blazar-origin hypothesis of the IceCube event IC14 for a broad range of blazar spectra, although an atmospheric origin cannot be excluded. No ANTARES events are observed from any of the other four blazars, including the three associated with IceCube event IC20. This excludes at a 90% confidence level the possibility that this event was produced by these blazars unless the neutrino spectrum is flatter than $-2.4$.
Carpet-2 is an air-shower array at Baksan Valley, Russia, equipped with a large-area (175 m^2) muon detector, which makes it possible to separate primary photons from hadrons. We report the first results of the search for primary photons with energie s E_gamma>1 PeV, directionally associated with IceCube high-energy neutrino events, in the data obtained in 3080 days of Carpet-2 live time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا