ترغب بنشر مسار تعليمي؟ اضغط هنا

On the flavor composition of the high-energy neutrino events in IceCube

165   0   0.0 ( 0 )
 نشر من قبل Sergio Palomares-Ruiz
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The IceCube experiment has recently reported the observation of 28 high-energy (> 30 TeV) neutrino events, separated into 21 showers and 7 muon tracks, consistent with an extraterrestrial origin. In this letter we compute the compatibility of such an observation with possible combinations of neutrino flavors with relative proportion (alpha_e:alpha_mu:alpha_tau). Although the 7:21 track-to-shower ratio is naively favored for the canonical (1:1:1) at Earth, this is not true once the atmospheric muon and neutrino backgrounds are properly accounted for. We find that, for an astrophysical neutrino E^(-2) energy spectrum, (1:1:1) at Earth is disfavored at 81% C.L. If this proportion does not change, 6 more years of data would be needed to exclude (1:1:1) at Earth at 3 sigma C.L. Indeed, with the recently-released 3-year data, that flavor composition is excluded at 92% C.L. The best-fit is obtained for (1:0:0) at Earth, which cannot be achieved from any flavor ratio at sources with averaged oscillations during propagation. If confirmed, this result would suggest either a misunderstanding of the expected background events, or a misidentification of tracks as showers, or even more compellingly, some exotic physics which deviates from the standard scenario.

قيم البحث

اقرأ أيضاً

The IceCube experiment has recently released 3 years of data of the first ever detected high-energy (>30 TeV) neutrinos, which are consistent with an extraterrestrial origin. In this talk, we compute the compatibility of the observed track-to-shower ratio with possible combinations of neutrino flavors with relative proportion (alpha_e:alpha_mu:alpha_tau). Although this observation is naively favored for the canonical (1:1:1) at Earth, once we consider the IceCube expectations for the atmospheric muon and neutrino backgrounds, this flavor combination presents some tension with data. We find that, for an astrophysical neutrino E_nu^{-2} energy spectrum, (1:1:1) at Earth is currently disfavored at 92% C.L. We discuss the trend of this result by comparing the results with the 2-year and 3-year data. We obtain the best-fit for (1:0:0) at Earth, which cannot be achieved from any flavor ratio at sources with averaged oscillations during propagation. Although it is not statistically significant at present, if confirmed, this result would suggest either a misunderstanding of the expected background events, or a misidentification of tracks as showers, or even more compellingly, some exotic physics which deviates from the standard scenario.
We present an in-depth analysis of the flavour and spectral composition of the 36 high-energy neutrino events observed after three years of observation by the IceCube neutrino telescope. While known astrophysical sources of HE neutrinos are expected to produce a nearly $(1:1:1)$ flavour ratio (electron : muon : tau) of neutrinos at earth, we show that the best fits based on the events detected above $E_ u ge 28$ TeV do not necessarily support this hypothesis. Crucially, the energy range that is considered when analysing the HE neutrino data can have a profound impact on the conclusions. We highlight two intriguing puzzles: an apparent deficit of muon neutrinos, seen via a deficit of track-like events; and an absence of $bar u_e$s at high energy, seen as an absence of events near the Glashow resonance. We discuss possible explanations, including the misidentification of tracks as showers, and a broken power law, in analogy to the observed HE cosmic ray spectrum.
102 - Tianlu Yuan 2019
The flux of high-energy neutrinos passing through the Earth is attenuated due to their interactions with matter. Their transmission probability is modulated by the neutrino interaction cross section and affects the arrival flux at the IceCube Neutrin o Observatory, a cubic-kilometer neutrino detector embedded in the South Pole ice sheet. We present a measurement of the neutrino-nucleon cross section between 60 TeV--10 PeV using the high-energy starting events (HESE) sample from IceCube with 7.5 years of data.
73 - T.S. Sinegovskaya , 2014
We calculate the atmospheric neutrino fluxes in the energy range $100$ GeV -- $10$ PeV with the use of several known hadronic models and a few parametrizations of the cosmic ray spectra which take into account the knee. The calculations are compared with the atmospheric neutrino measurements by Frejus, AMANDA, IceCube and ANTARES. An analytic description is presented for the conventional ($ u_mu+bar u_mu$) and ($ u_e+bar u_e$) energy spectra, averaged over zenith angles, which can be used to obtain test data of the neutrino event reconstruction in neutrino telescopes. The sum of the calculated atmospheric $ u_mu$ flux and the IceCube best-fit astrophysical flux gives the evidently higher flux as compared to the IceCube59 data, giving rise the question concerning the hypothesis of the equal flavor composition of the high-energy astrophysical neutrino flux. Calculations show that the transition from the atmospheric electron neutrino flux to the predominance of the astrophysical neutrinos occurs at $30-100$ TeV if the prompt neutrino component is taken into consideration. The neutrino flavor ratio, extracted from the IceCube data, does not reveal the trend to increase with the energy as is expected for the conventional neutrino flux in the energy range $100$ GeV - $30$ TeV. A depression of the ratio $R_{ u_mu/ u_e}$ possibly indicates that the atmospheric electron neutrino flux obtained in the IceCube experiment contains an admixture of the astrophysical neutrinos in the range $10-50$ TeV.
A full energy and flavor-dependent analysis of the three-year high-energy IceCube neutrino events is presented. By means of multidimensional fits, we derive the current preferred values of the high-energy neutrino flavor ratios, the normalization and spectral index of the astrophysical fluxes, and the expected atmospheric background events, including a prompt component. A crucial assumption resides on the choice of the energy interval used for the analyses, which significantly biases the results. When restricting ourselves to the ~30 TeV - 3 PeV energy range, which contains all the observed IceCube events, we find that the inclusion of the spectral information improves the fit to the canonical flavor composition at Earth, (1:1:1), with respect to a single-energy bin analysis. Increasing both the minimum and the maximum deposited energies has dramatic effects on the reconstructed flavor ratios as well as on the spectral index. Imposing a higher threshold of 60 TeV yields a slightly harder spectrum by allowing a larger muon neutrino component, since above this energy most atmospheric tracklike events are effectively removed. Extending the high-energy cutoff to fully cover the Glashow resonance region leads to a softer spectrum and a preference for tau neutrino dominance, as none of the expected electron antineutrino induced showers have been observed so far. The lack of showers at energies above 2 PeV may point to a broken power-law neutrino spectrum. Future data may confirm or falsify whether or not the recently discovered high-energy neutrino fluxes and the long-standing detected cosmic rays have a common origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا