ترغب بنشر مسار تعليمي؟ اضغط هنا

ANTARES Constrains a Blazar Origin of Two IceCube PeV Neutrino Events

66   0   0.0 ( 0 )
 نشر من قبل Clancy James
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most energetic IceCube events. Objects like these are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. We present an analysis of neutrino emission from the six blazars using observations with the ANTARES neutrino telescope.The standard methods of the ANTARES candidate list search are applied to six years of data to search for an excess of muons --- and hence their neutrino progenitors --- from the directions of the six blazars described by the TANAMI Collaboration, and which are possibly associated with two IceCube events. Monte Carlo simulations of the detector response to both signal and background particle fluxes are used to estimate the sensitivity of this analysis for different possible source neutrino spectra. A maximum-likelihood approach, using the reconstructed energies and arrival directions of through-going muons, is used to identify events with properties consistent with a blazar origin.Both blazars predicted to be the most neutrino-bright in the TANAMI sample (1653$-$329 and 1714$-$336) have a signal flux fitted by the likelihood analysis corresponding to approximately one event. This observation is consistent with the blazar-origin hypothesis of the IceCube event IC14 for a broad range of blazar spectra, although an atmospheric origin cannot be excluded. No ANTARES events are observed from any of the other four blazars, including the three associated with IceCube event IC20. This excludes at a 90% confidence level the possibility that this event was produced by these blazars unless the neutrino spectrum is flatter than $-2.4$.

قيم البحث

اقرأ أيضاً

In the past years, the IceCube Collaboration has reported in several analyses the observation of astrophysical high-energy neutrino events. Despite a compelling evidence for the first identification of a neutrino source, TXS 0506+056, the origin of t he majority of these events is still unknown. In this paper, a possible transient origin of the IceCube astrophysical events is searched for using neutrino events detected by the ANTARES telescope. The arrival time and direction of 6894 track-like and 160 shower-like events detected over 2346 days of livetime are examined to search for coincidences with 54 IceCube high-energy track-like neutrino events, by means of a maximum likelihood method. No significant correlation is observed and upper limits on the one-flavour neutrino fluence from the direction of the IceCube candidates are derived. The non-observation of time and space correlation within the time window of 0.1 days with the two most energetic IceCube events constrains the spectral index of a possible point-like transient neutrino source, to be harder than $-2.3$ and $-2.4$ for each event, respectively.
Carpet-2 is an air-shower array at Baksan Valley, Russia, equipped with a large-area (175 m^2) muon detector, which makes it possible to separate primary photons from hadrons. We report the first results of the search for primary photons with energie s E_gamma>1 PeV, directionally associated with IceCube high-energy neutrino events, in the data obtained in 3080 days of Carpet-2 live time.
The IceCube Collaboration has announced the discovery of a neutrino flux in excess of the atmospheric background. Due to the steeply falling atmospheric background spectrum, events at PeV energies are most likely of extraterrestrial origin. We presen t the multiwavelength properties of the six radio brightest blazars positionally coincident with these events using contemporaneous data of the TANAMI blazar sample, including high-resolution images and spectral energy distributions. Assuming the X-ray to {gamma}-ray emission originates in the photoproduction of pions by accelerated protons, the integrated predicted neutrino luminosity of these sources is large enough to explain the two detected PeV events.
It has been speculated that Lorentz-invariance violation (LIV) might be generated by quantum-gravity (QG) effects. As a consequence, particles may not travel at the universal speed of light. In particular, superluminal extragalactic neutrinos would r apidly lose energy via the bremssthralung of electron-positron pairs (nu -> nu e+ e-), damping their initial energy into electromagnetic cascades, a figure constrained by Fermi-LAT data. We show that the two cascade neutrino events with energies around 1 PeV recently detected by IceCube -if attributed to extragalactic diffuse events, as it appears likely- can place the strongest bound on LIV in the neutrino sector, namely delta =(v^2-1) < O(10^(-18)), corresponding to a QG scale M_QG ~ 10^5 M_Pl (M_QG >~ 10^(-4) M_Pl) for a linear (quadratic) LIV, at least for models inducing superluminal neutrino effects (delta > 0).
The discovery of extraterrestrial very-high-energy neutrinos by the IceCube collaboration has launched a quest for the identification of their astrophysical sources. Gamma-ray blazars have been predicted to yield a cumulative neutrino signal exceedin g the atmospheric background above energies of 100 TeV, assuming that both the neutrinos and the gamma-ray photons are produced by accelerated protons in relativistic jets. Since the background spectrum falls steeply with increasing energy, the individual events with the clearest signature of being of an extraterrestrial origin are those at PeV energies. Inside the large positional-uncertainty fields of the first two PeV neutrinos detected by IceCube, the integrated emission of the blazar population has a sufficiently high electromagnetic flux to explain the detected IceCube events, but fluences of individual objects are too low to make an unambiguous source association. Here, we report that a major outburst of the blazar PKS B1424-418 occurred in temporal and positional coincidence with the third PeV-energy neutrino event (IC35) detected by IceCube. Based on an analysis of the full sample of gamma-ray blazars in the IC35 field and assuming a photo-hadronic emission model, we show that the long-term average gamma-ray emission of blazars as a class is in agreement with both the measured all-sky flux of PeV neutrinos and the spectral slope of the IceCube signal. The outburst of PKS B1424-418 has provided an energy output high enough to explain the observed PeV event, indicative of a direct physical association.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا