ﻻ يوجد ملخص باللغة العربية
Extensions of the Standard Model with charged Higgs, having a non-negligible coupling with neutrinos, can have interesting implications vis-`{a}-vis neutrino experiments. Such models can leave their footprints in the ultra-high energy neutrino detectors like IceCube in the form of neutrino non-standard interactions (NSIs) which can also be probed in lower energy neutrino experiments. We consider a model based on the neutrinophilic two-Higgs doublets and study its imprints in the recently reported excess neutrino events in the PeV energy bins at the IceCube. An additional signature of the model is that it also leads to sizeable NSIs. We perform a combined study of the latest IceCube data along with various other constraints arising from neutrino experiments e.g., Borexino, TEXONO, COHERENT, DUNE, and T2HK, together with the limits set by the LEP experiment, and explore the parameter space which can lead to a sizeable NSI.
IceCube collaboration has published two papers on ultrahigh energy neutrinos observation, recently. They have used the data collected in two years in their first publication, which reveals observation of two PeV energy neutrino events. The second pub
Higgs pair production is one of the primary goals of the LHC program. Investigating the effects beyond the Standard Model (BSM) is then of high interest. Two cases are presented to exemplify the impact of BSM physics on Higgs pair production and on t
The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most e
The energy spectrum of high-energy neutrinos reported by the IceCube collaboration shows a dip between 400 TeV and 1 PeV. One intriguing explanation is that high-energy neutrinos scatter with the cosmic neutrino background through a $sim$ MeV mediato
Carpet-2 is an air-shower array at Baksan Valley, Russia, equipped with a large-area (175 m^2) muon detector, which makes it possible to separate primary photons from hadrons. We report the first results of the search for primary photons with energie