ترغب بنشر مسار تعليمي؟ اضغط هنا

Carpet-2 search for PeV gamma rays associated with IceCube high-energy neutrino events

67   0   0.0 ( 0 )
 نشر من قبل S. V. Troitsky
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Carpet-2 is an air-shower array at Baksan Valley, Russia, equipped with a large-area (175 m^2) muon detector, which makes it possible to separate primary photons from hadrons. We report the first results of the search for primary photons with energies E_gamma>1 PeV, directionally associated with IceCube high-energy neutrino events, in the data obtained in 3080 days of Carpet-2 live time.

قيم البحث

اقرأ أيضاً

Early results of the search for E_gamma>1 PeV cosmic photons from point sources with the data of Carpet-2, an air-shower array equipped with a 175 m^2 muon detector, are presented. They include 95% CL upper limits on PeV photon fluxes from stacked di rections of high-energy IceCube neutrino events and from four predefined sources, Crab, Cyg X-3, Mrk 421 and Mrk 501. An insignificant excess of events from Mrk 421 will be further monitored. Prospects of the use of the upgraded installation, Carpet-3 (410 m^2 muon detector), scheduled to start data taking in 2019, for searches of E_gamma>100 TeV photons, are briefly discussed.
Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muo ns. IceCube is sensitive to muons with energies above ~500 GeV at the surface, which provides an efficient veto system for hadronic air showers with energies above 1 PeV. One year of data from the 40-string IceCube configuration was used to perform a search for point sources and a Galactic diffuse signal. No sources were found, resulting in a 90% C.L. upper limit on the ratio of gamma rays to cosmic rays of 1.2 x 10^(-3)for the flux coming from the Galactic Plane region (-80 deg < l < -30 deg; -10 deg < b < 5 deg) in the energy range 1.2 - 6.0 PeV. In the same energy range, point source fluxes with E^(-2) spectra have been excluded at a level of (E/TeV)^2 dPhi/dE ~ 10^(-12)-10^(-11) cm^2/s/TeV depending on source declination. The complete IceCube detector will have a better sensitivity, due to the larger detector size, improved reconstruction and vetoing techniques. Preliminary data from the nearly-final IceCube detector configuration has been used to estimate the 5 year sensitivity of the full detector. It is found to be more than an order of magnitude better, allowing the search for PeV extensions of known TeV gamma-ray emitters.
We report on the search of astrophysical gamma rays with energies in the 100 TeV to several PeV range arriving in directional and temporal coincidence with public alerts from HAWC (TeV gamma rays) and IceCube (neutrinos above ~100 TeV). The observati ons have been performed with the Carpet-2 air-shower detector at the Baksan Neutrino Observatory, working in the photon-friendly mode since 2018. Photon candidate showers are selected by their low muon content. No significant excess of the photon candidates have been observed, and upper limits on gamma-ray fluences associated with the alerts are obtained. For events with good viewing conditions, the Carpet-2 effective area for photons is of the order of the IceCube effective area for neutrinos of the same energy, so the constraints start to probe the production of neutrinos in fast flares of Galactic sources.
In the past years, the IceCube Collaboration has reported in several analyses the observation of astrophysical high-energy neutrino events. Despite a compelling evidence for the first identification of a neutrino source, TXS 0506+056, the origin of t he majority of these events is still unknown. In this paper, a possible transient origin of the IceCube astrophysical events is searched for using neutrino events detected by the ANTARES telescope. The arrival time and direction of 6894 track-like and 160 shower-like events detected over 2346 days of livetime are examined to search for coincidences with 54 IceCube high-energy track-like neutrino events, by means of a maximum likelihood method. No significant correlation is observed and upper limits on the one-flavour neutrino fluence from the direction of the IceCube candidates are derived. The non-observation of time and space correlation within the time window of 0.1 days with the two most energetic IceCube events constrains the spectral index of a possible point-like transient neutrino source, to be harder than $-2.3$ and $-2.4$ for each event, respectively.
Blazars constitute the vast majority of extragalactic $gamma$-ray sources. They can also contribute a sizable fraction of the diffuse astrophysical neutrinos detected by IceCube. In the past few years, the real-time alert system of IceCube has led to multiwavelength follow-up of very high-energy neutrino events of plausible astrophysical origin. Spatial and temporal coincidences of these neutrino events with the high-activity state of $gamma$-ray blazars can provide a unique opportunity to decipher cosmic-ray interactions in the relativistic jets. Assuming that blazars accelerate cosmic rays up to ultrahigh energies ($E>10^{17}$ eV), we calculate the guaranteed contribution to the line-of-sight cosmogenic $gamma$-ray and neutrino fluxes from four blazars associated with IceCube neutrino events. Detection of these fluxes by upcoming $gamma$-ray imaging telescopes like CTA and/or by planned neutrino detectors like IceCube-Gen2 may lead to the first direct signature(s) of ultrahigh-energy cosmic-ray (UHECR) sources. We find that detection of the cosmogenic neutrino fluxes from the blazars TXS~0506+056, PKS~1502+106 and GB6~J1040+0617 would require UHECR luminosity $gtrsim 10$ times the inferred neutrino luminosity from the associated IceCube events. Blazars TXS~0506+056, 3HSP~J095507.9+355101 and GB6~J1040+0617 can be detected by CTA if the UHECR luminosity is $gtrsim 10$ times the neutrino luminosity inferred from the associated IceCube events. Given their relatively low redshifts and hence total energetics, TXS~0506+056 and 3HSP~J095507.9+355101 should be the prime targets for upcoming large neutrino and $gamma$-ray telescopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا