ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiferroicity in the generic easy-plane triangular lattice antiferromagnet RbFe(MoO4)2

89   0   0.0 ( 0 )
 نشر من قبل Jonathan White
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

RbFe(MoO4)2 is a quasi-two-dimensional (quasi-2D) triangular lattice antiferromagnet (TLA) that displays a zero-field magnetically-driven multiferroic phase with a chiral spin structure. By inelastic neutron scattering, we determine quantitatively the spin Hamiltonian. We show that the easy-plane anisotropy is nearly 1/3 of the dominant spin exchange, making RbFe(MoO4)2 an excellent system for studying the physics of the model 2D easy-plane TLA. Our measurements demonstrate magnetic-field induced fluctuations in this material to stabilize the generic finite-field phases of the 2D XY TLA. We further explain how Dzyaloshinskii-Moriya interactions can generate ferroelectricity only in the zero field phase. Our conclusion is that multiferroicity in RbFe(MoO4)2, and its absence at high fields, results from the generic properties of the 2D XY TLA.

قيم البحث

اقرأ أيضاً

We observe a disappearance of the 1/3 magnetization plateau and a striking change of the magnetic configuration under a moderate doping of the model triangular antiferromagnet RbFe(MoO4)2. The reason is an effective lifting of degeneracy of mean-fiel d ground states by a random potential of impurities, which compensates, in the low temperature limit, the fluctuation contribution to free energy. These results provide a direct experimental confirmation of the fluctuation origin of the ground state in a real frustrated system. The change of the ground state to a least collinear configuration reveals an effective positive biquadratic exchange provided by the structural disorder. On heating, doped samples regain the structure of a pure compound thus allowing for an investigation of the remarkable competition between thermal and structural disorder.
The classical XXZ triangular-lattice antiferromagnet (TAF) shows both an Ising and a BKT transition, related to the chirality and the in-plane spin components, respectively. In this paper the quantum effects on the thermodynamic quantities are evalua ted by means of the pure-quantum self-consistent harmonic approximation (PQSCHA), that allows one to deal with any spin value through classical MC simulations. We report the internal energy, the specific heat, and the in-plane correlation length of the quantum XX0 TAF, for S=1/2, 1, 5/2. The quantum transition temperatures turn out to be smaller the smaller the spin, and agree with the few available theoretical and numerical estimates.
88 - R. Rawl , L. Ge , Z. Lu 2019
We successfully synthesized and characterized the triangular lattice anitferromagnet Ba$_8$MnNb$_6$O$_{24}$, which comprises equilateral spin-5/2 Mn$^{2+}$ triangular layers separated by six non-magnetic Nb$^{5+}$ layers. The detailed susceptibility, specific heat, elastic and inelastic neutron scattering measurements, and spin wave theory simulation on this system reveal that it has a 120 degree ordering ground state below T$_N$ = 1.45 K with in-plane nearest-neighbor exchange interaction ~0.11 meV. While the large separation 18.9 A between magnetic layers makes the inter-layer exchange interaction virtually zero, our results suggest that a weak easy-plane anisotropy is the driving force for the k$_m$ = (1/3 1/3 0) magnetic ordering. The magnetic properties of Ba$_8$MnNb$_6$O$_{24}$, along with its classical excitation spectra, contrast with the related triple perovskite Ba$_3$MnNb$_2$O$_9$, which shows easy-axis anisotropy, and the iso-structural compound Ba$_8$CoNb$_6$O$_{24}$, in which the effective spin-1/2 Co$^{2+}$ spins do not order down to 60 mK and in which the spin dynamics shows sign of strong quantum effects.
Magnetocrystalline anisotropy is a fundamental property of magnetic materials that determines the dynamics of magnetic precession, the frequency of spin waves, the thermal stability of magnetic domains, and the efficiency of spintronic devices. We co mbine torque magnetometry and density functional theory calculations to determine the magnetocrystalline anisotropy of the metallic antiferromagnet Fe$_2$As. Fe$_2$As has a tetragonal crystal structure with the Neel vector lying in the (001) plane. We report that the four-fold magnetocrystalline anisotropy in the (001)-plane of Fe$_2$As is extremely small, ${K_{22}} = - 150~{rm{ J/}}{{rm{m}}^{rm{3}}}$ at T = 4 K, much smaller than perpendicular magnetic anisotropy of ferromagnetic structure widely used in spintronics device. ${K_{22}}$ is strongly temperature dependent and close to zero at T > 150 K. The anisotropy ${K_1}$ in the (010) plane is too large to be measured by torque magnetometry and we determine ${K_1} = -830~{rm{ kJ/}}{{rm{m}}^{rm{3}}}$ using first-principles density functional theory. Our simulations show that the contribution to the anisotropy from classical magnetic dipole-dipole interactions is comparable to the contribution from spin-orbit coupling. The calculated four-fold anisotropy in the (001) plane ${K_{22}}$ ranges from $- 292~{rm{ J/}}{{rm{m}}^{rm{3}}}$ to $280~{rm{ J/}}{{rm{m}}^{rm{3}}}$, the same order of magnitude as the measured value. We use ${K_1}$ from theory to predict the frequency and polarization of the lowest frequency antiferromagnetic resonance mode and find that the mode is linearly polarized in the (001)-plane with $f = $ 670 GHz.
The coupling of magnetic chiralities to the ferroelectric polarisation in multiferroic RbFe(MoO$_4$)$_2$ is investigated by neutron spherical polarimetry. Because of the axiality of the crystal structure below $T_textrm{c}$ = 190 K, helicity and tria ngular chirality are symmetric-exchange coupled, explaining the onset of the ferroelectricity in this proper-screw magnetic structure - a mechanism that can be generalised to other systems with ferroaxial distortions in the crystal structure. With an applied electric field we demonstrate control of the chiralities in both structural domains simultaneously.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا