ﻻ يوجد ملخص باللغة العربية
The classical XXZ triangular-lattice antiferromagnet (TAF) shows both an Ising and a BKT transition, related to the chirality and the in-plane spin components, respectively. In this paper the quantum effects on the thermodynamic quantities are evaluated by means of the pure-quantum self-consistent harmonic approximation (PQSCHA), that allows one to deal with any spin value through classical MC simulations. We report the internal energy, the specific heat, and the in-plane correlation length of the quantum XX0 TAF, for S=1/2, 1, 5/2. The quantum transition temperatures turn out to be smaller the smaller the spin, and agree with the few available theoretical and numerical estimates.
RbFe(MoO4)2 is a quasi-two-dimensional (quasi-2D) triangular lattice antiferromagnet (TLA) that displays a zero-field magnetically-driven multiferroic phase with a chiral spin structure. By inelastic neutron scattering, we determine quantitatively th
The pure-quantum self-consistent harmonic approximation, a semiclassical method based on the path-integral formulation of quantum statistical mechanics, is applied to the study of the thermodynamic behaviour of the quantum Heisenberg antiferromagnet
We study the thermodynamics of Ising spins on the triangular kagome lattice (TKL) using exact analytic methods as well as Monte Carlo simulations. We present the free energy, internal energy, specific heat, entropy, sublattice magnetizations, and sus
We use the rotation-invariant Greens function method (RGM) and the high-temperature expansion (HTE) to study the thermodynamic properties of the Heisenberg antiferromagnet on the pyrochlore lattice. We discuss the excitation spectra as well as variou
We derive exact results for close-packed dimers on the triangular kagome lattice (TKL), formed by inserting triangles into the triangles of the kagome lattice. Because the TKL is a non-bipartite lattice, dimer-dimer correlations are short-ranged, so