ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetocrystalline anisotropy of the easy-plane metallic antiferromagnet Fe$_2$As

223   0   0.0 ( 0 )
 نشر من قبل Kexin Yang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetocrystalline anisotropy is a fundamental property of magnetic materials that determines the dynamics of magnetic precession, the frequency of spin waves, the thermal stability of magnetic domains, and the efficiency of spintronic devices. We combine torque magnetometry and density functional theory calculations to determine the magnetocrystalline anisotropy of the metallic antiferromagnet Fe$_2$As. Fe$_2$As has a tetragonal crystal structure with the Neel vector lying in the (001) plane. We report that the four-fold magnetocrystalline anisotropy in the (001)-plane of Fe$_2$As is extremely small, ${K_{22}} = - 150~{rm{ J/}}{{rm{m}}^{rm{3}}}$ at T = 4 K, much smaller than perpendicular magnetic anisotropy of ferromagnetic structure widely used in spintronics device. ${K_{22}}$ is strongly temperature dependent and close to zero at T > 150 K. The anisotropy ${K_1}$ in the (010) plane is too large to be measured by torque magnetometry and we determine ${K_1} = -830~{rm{ kJ/}}{{rm{m}}^{rm{3}}}$ using first-principles density functional theory. Our simulations show that the contribution to the anisotropy from classical magnetic dipole-dipole interactions is comparable to the contribution from spin-orbit coupling. The calculated four-fold anisotropy in the (001) plane ${K_{22}}$ ranges from $- 292~{rm{ J/}}{{rm{m}}^{rm{3}}}$ to $280~{rm{ J/}}{{rm{m}}^{rm{3}}}$, the same order of magnitude as the measured value. We use ${K_1}$ from theory to predict the frequency and polarization of the lowest frequency antiferromagnetic resonance mode and find that the mode is linearly polarized in the (001)-plane with $f = $ 670 GHz.


قيم البحث

اقرأ أيضاً

We demonstrate that chiral skyrmionic magnetization configurations can be found as the minimum energy state in B20 thin film materials with easy-plane magnetocrystalline anisotropy with an applied magnetic field perpendicular to the film plane. Our o bservations contradict results from prior analytical work, but are compatible with recent experimental investigations. The size of the observed skyrmions increases with the easy-plane magnetocrystalline anisotropy. We use a full micromagnetic model including demagnetization and a three-dimensional geometry to find local energy minimum (metastable) magnetization configurations using numerical damped time integration. We explore the phase space of the system and start simulations from a variety of initial magnetization configurations to present a systematic overview of anisotropy and magnetic field parameters for which skyrmions are metastable and global energy minimum (stable) states.
223 - K. Shigetoh , A. Ishida , Y. Ayabe 2007
Highly anisotropic properties of CeIr$_3$Si$_2$ have been observed by the magnetization $M$($B$), electrical resistivity $rho$, and specific heat measurements on a single-crystalline sample. This compound with an orthorhombic structure having zigzag chains of Ce ions along the a-axis undergos magnetic transitions at 3.9 K and 3.1 K. At 0.3 K, metamagnetic transitions occur at 0.68 T and 1.3 T for $B$$//$$b$ and 0.75 T for $B$$//$$c$. Easy-plane magnetocrystalline anisotropy is manifested as $M$($B//b$) $cong$ $M$($B//c$) $cong$ 11$M$($B//a$) at $B$ = 5 T. Electrical resistivity is also anisotropic; $rho_{b}$ $cong$ $rho_{c}$ $ge$ 2$rho_{a}$. The magnetic part of $rho$ exhibits a double-peak structure with maxima at 15 K and 250 K. The magnetic entropy at $T$$rm_{N1}$ = 3.9 K is a half of $R$ln2. These observations are ascribable to the combination of the Kondo effect with $T$$rm_{K}$ $sim$ 20 K and a strong crystal field effect. The analysis of $M$($B$) and paramagnetic susceptibility revealed unusually large energy splitting of 500 K and 1600 K for the two excited doublets, respectively.
To understand spin interactions in materials of the Cu$_2$Sb structure type, inelastic neutron scattering of Fe$_2$As single crystals was examined at different temperatures and incident neutron energies. The experimental phonon spectra match well wit h the simulated phonon spectra obtained from density functional theory (DFT) calculations. The measured magnon spectra were compared to the simulated magnon spectra obtained via linear spin wave theory with the exchange coupling constants calculated using the spin polarized, relativistic Korringa-Kohn-Rostoker method in Zhang et al. (2013). The simulated magnon spectra broadly agree with the experimental data although, the energy values are underestimated along the $K$ direction. Exchange coupling constants between Fe atoms were refined by fits to the experimental magnon spectra, revealing stronger nearest neighbor Fe1-Fe1 exchange coupling than previously reported. The strength of this exchange coupling is almost an order of magnitude higher than other exchange interactions despite the three-dimensional nature of the phonon interactions. The lack of scattering intensity at energies above 60 meV makes unconstrained determination of the full set of exchange interactions difficult, which may be a fundamental challenge in metallic antiferromagnets.
The magnetic properties of the two-dimensional, S=1 honeycomb antiferromagnet BaNi$_2$V$_2$O$_8$ have been comprehensively studied using DC susceptibility measurements and inelastic neutron scattering techniques. The magnetic excitation spectrum is f ound to be dispersionless within experimental resolution between the honeycomb layers, while it disperses strongly within the honeycomb plane where it consists of two gapped spin-wave modes. The magnetic excitations are compared to linear spin-wave theory allowing the Hamiltonian to be determined. The first- and second-neighbour magnetic exchange interactions are antiferromagnetic and lie within the ranges 10.90meV$le$J$_n$$le$13.35 meV and 0.85meV$le$J$_{nn}$$le$1.65 meV respectively. The interplane coupling J$_{out}$ is four orders of magnitude weaker than the intraplane interactions, confirming the highly two-dimensional magnetic behaviour of this compound. The sizes of the energy gaps are used to extract the magnetic anisotropies and reveal substantial easy-plane anisotropy and a very weak in-plane easy-axis anisotropy. Together these results reveal that BaNi$_2$V$_2$O$_8$ is a candidate compound for the investigation of vortex excitations and Berezinsky-Kosterliz-Thouless phenomenona.
The origin of large perpendicular magneto-crystalline anisotropy (PMCA) in Fe/MgO (001) is revealed by comparing Fe layers with and without the MgO. Although Fe-O $p$-$d$ hybridization is weakly present, it cannot be the main origin of the large PMCA as claimed in previous study. Instead, perfect epitaxy of Fe on the MgO is more important to achieve such large PMCA. As an evidence, we show that the surface layer in a clean free-standing Fe (001) dominantly contributes to $E_{MCA}$, while in the Fe/MgO, those by the surface and the interface Fe layers contribute almost equally. The presence of MgO does not change positive contribution from $langle xz|ell_Z|yzrangle$, whereas it reduces negative contribution from $langle z^2|ell_X|yzrangle$ and $langle xy|ell_X|xz,yzrangle$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا