ﻻ يوجد ملخص باللغة العربية
We describe measurements demonstrating laser cooling of an atomic gas by means of collisional redistribution of radiation. The experiment uses rubidium atoms in the presence of several hundred bar of argon buffer gas pressure. Frequent collisions in the dense gas transiently shift a far red detuned optical field into resonance, while spontaneous emission occurs close to the unperturbed atomic transition frequency. Evidence for the cooling is obtained both via thermographic imaging and via thermographic deflection spectroscopy. The cooled gas has a density above 10$^{21}$ atoms/cm$^3$, yielding evidence for the laser cooling of a macroscopic ensemble of gas atoms.
We propose a laser cooling technique in which atoms are selectively excited to a dressed metastable state whose light shift and decay rate are spatially correlated for Sisyphus cooling. The case of cooling magnetically trapped (anti)hydrogen with the
We have recorded fluorescence spectra of the atomic rubidium D-lines in the presence of several hundreds of bars buffer gas pressure. With additional saturation broadening a spectral linewidth comparable to the thermal energy of the atoms in the heat
We observe spin transfer within a non-degenerate heteronuclear spinor atomic gas comprised of a small $^7$Li population admixed with a $^{87}$Rb bath, with both elements in their $F=1$ hyperfine spin manifolds and at temperatures of 10s of $mu$K. Pre
Radio-frequency electric-dipole transitions between nearly degenerate, opposite parity levels of atomic dysprosium (Dy) were monitored over an eight-month period to search for a variation in the fine-structure constant, $alpha$. The data provide a ra
We analyze the temporal response of the fluorescence light that is emitted from a dense gas of cold atoms driven by a laser. When the average interatomic distance is smaller than the wavelength of the photons scattered by the atoms, the system exhibi