ترغب بنشر مسار تعليمي؟ اضغط هنا

Collisional spin transfer in an atomic heteronuclear spinor Bose gas

322   0   0.0 ( 0 )
 نشر من قبل Fang Fang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observe spin transfer within a non-degenerate heteronuclear spinor atomic gas comprised of a small $^7$Li population admixed with a $^{87}$Rb bath, with both elements in their $F=1$ hyperfine spin manifolds and at temperatures of 10s of $mu$K. Prepared in a non-equilibrium initial state, the $^7$Li spin distribution evolves through incoherent spin-changing collisions toward a steady-state distribution. We identify and measure the cross-sections of all three types of spin-dependent heteronuclear collisions, namely the spin-exchange, spin-mixing, and quadrupole-exchange interactions, and find agreement with predictions of heteronuclear $^7$Li-$^{87}$Rb interactions at low energy. Moreover, we observe that the steady state of the $^7$Li spinor gas can be controlled by varying the composition of the $^{87}$Rb spin bath with which it interacts.



قيم البحث

اقرأ أيضاً

We describe measurements demonstrating laser cooling of an atomic gas by means of collisional redistribution of radiation. The experiment uses rubidium atoms in the presence of several hundred bar of argon buffer gas pressure. Frequent collisions in the dense gas transiently shift a far red detuned optical field into resonance, while spontaneous emission occurs close to the unperturbed atomic transition frequency. Evidence for the cooling is obtained both via thermographic imaging and via thermographic deflection spectroscopy. The cooled gas has a density above 10$^{21}$ atoms/cm$^3$, yielding evidence for the laser cooling of a macroscopic ensemble of gas atoms.
We demonstrate detection of a weak alternate-current magnetic field by application of the spin echo technique to F = 2 Bose-Einstein condensates. A magnetic field sensitivity of 12 pT/Hz^1/2 is attained with the atom number of 5*10^3 at spatial resol ution of 99 mu m^2. Our observations indicate magnetic field fluctuations synchronous with the power supply line frequency. We show that this noise is greatly suppressed by application of a reverse phase magnetic field. Our technique is useful in order to create a stable magnetic field environment, which is an important requirement for atomic experiments which require a weak bias magnetic field.
We study a mixture of spin-$1$ bosonic and spin-$1/2$ fermionic cold atoms, e.g., $^{87}$Rb and $^{6}$Li, confined in a triangular optical lattice. With fermions at $3/4$ filling, Fermi surface nesting leads to spontaneous formation of various spin t extures of bosons in the ground state, such as collinear, coplanar and even non-coplanar spin orders. The phase diagram is mapped out with varying boson tunneling and Bose-Fermi interactions. Most significantly, in one non-coplanar state the mixture is found to exhibit a spontaneous quantum Hall effect in fermions and crystalline superfluidity in bosons, both driven by interaction.
Under negative feedback, the quality factor Q of a radio-frequency magnetometer can be decreased by more than two orders of magnitude, so that any initial perturbation of the polarized spin system can be rapidly damped, preparing the magnetometer for detection of the desired signal. We find that noise is also suppressed under such spin-damping, with a characteristic spectral response corresponding to the type of noise; therefore magnetic, photon-shot, and spin-projection noise can be measured distinctly. While the suppression of resonant photon-shot noise implies the closed-loop production of polarization-squeezed light, the suppression of resonant spin-projection noise does not imply spin-squeezing, rather simply the broadening of the noise spectrum with Q. Furthermore, the application of spin-damping during phase-sensitive detection suppresses both signal and noise in such a way as to increase the sensitivity bandwidth. We demonstrate a three-fold increase in the magnetometers bandwidth while maintaining 0.3 fT/surdHz sensitivity.
328 - S. Ospelkaus , A. Peer , K.-K. Ni 2008
Recently, the quest for an ultracold and dense ensemble of polar molecules has attracted strong interest. Polar molecules have bright prospects for novel quantum gases with long-range and anisotropic interactions, for quantum information science, and for precision measurements. However, high-density clouds of ultracold polar molecules have so far not been produced. Here, we report a key step towards this goal. Starting from an ultracold dense gas of heteronuclear 40K-87Rb Feshbach molecules with typical binding energies of a few hundred kHz and a negligible dipole moment, we coherently transfer these molecules into a vibrational level of the ground-state molecular potential bound by >10 GHz. We thereby increase the binding energy and the expected dipole moment of the 40K-87Rb molecules by more than four orders of magnitude in a single transfer step. Starting with a single initial state prepared with Feshbach association, we achieve a transfer efficiency of 84%. While dipolar effects are not yet observable, the presented technique can be extended to access much more deeply bound vibrational levels and ultimately those exhibiting a significant dipole moment. The preparation of an ultracold quantum gas of polar molecules might therefore come within experimental reach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا