ترغب بنشر مسار تعليمي؟ اضغط هنا

A pulsed Sisyphus scheme for laser cooling of atomic (anti)hydrogen

206   0   0.0 ( 0 )
 نشر من قبل Saijun Wu
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a laser cooling technique in which atoms are selectively excited to a dressed metastable state whose light shift and decay rate are spatially correlated for Sisyphus cooling. The case of cooling magnetically trapped (anti)hydrogen with the 1S-2S-3P transitions using pulsed ultra violet and continuous-wave visible lasers is numerically simulated. We find a number of appealing features including rapid 3-dimensional cooling from ~1 K to recoil-limited, millikelvin temperatures, as well as suppressed spin-flip loss and manageable photoionization loss.

قيم البحث

اقرأ أيضاً

Aluminum monochloride (AlCl) has been proposed as a promising candidate for laser cooling to ultracold temperatures, and recent spectroscopy results support this prediction. It is challenging to produce large numbers of AlCl molecules because it is a highly reactive open-shell molecule and must be generated in situ. Here we show that pulsed-laser ablation of stable, non-toxic mixtures of Al with an alkali or alkaline earth chlorides, denoted XCln, can provide a robust and reliable source of cold AlCl molecules. Both the chemical identity of XCln and the Al:XCln molar ratio are varied, and the yield of AlCl is monitored using absorption spectroscopy in a cryogenic gas. For KCl, the production of Al and K atoms was also monitored. We model the AlCl production in the limits of nonequilibrium recombination dominated by first-encounter events. The non-equilibrium model is in agreement with the data and also reproduces the observed trend with different XCln precursors. We find that AlCl production is limited by the solid-state densities of Al and Cl atoms and the recondensation of Al atoms in the ablation plume. We suggest future directions for optimizing the production of cold AlCl molecules using laser ablation.
104 - S. Ejtemaee , P. C. Haljan 2016
Using a laser polarization gradient, we realize 3D Sisyphus cooling of $^{171}$Yb$^+$ ions confined in and near the Lamb-Dicke regime in a linear Paul trap. The cooling rate and final mean motional energy of a single ion are characterized as a functi on of laser intensity and compared to semiclassical and quantum simulations. Sisyphus cooling is also applied to a linear string of four ions to obtain a mean energy of 1-3 quanta for all vibrational modes, an approximately order-of-magnitude reduction below Doppler cooled energies. This is used to enable subsequent, efficient sideband laser cooling.
We describe measurements demonstrating laser cooling of an atomic gas by means of collisional redistribution of radiation. The experiment uses rubidium atoms in the presence of several hundred bar of argon buffer gas pressure. Frequent collisions in the dense gas transiently shift a far red detuned optical field into resonance, while spontaneous emission occurs close to the unperturbed atomic transition frequency. Evidence for the cooling is obtained both via thermographic imaging and via thermographic deflection spectroscopy. The cooled gas has a density above 10$^{21}$ atoms/cm$^3$, yielding evidence for the laser cooling of a macroscopic ensemble of gas atoms.
We extend the theory for laser cooling in a near-resonant optical lattice to include multiple excited hyperfine states. Simulations are performed treating the external degrees of freedom of the atom, i.e., position and momentum, classically, while th e internal atomic states are treated quantum mechanically, allowing for arbitrary superpositions. Whereas theoretical treatments including only a single excited hyperfine state predict that the temperature should be a function of lattice depth only, except close to resonance, experiments have shown that the minimum temperature achieved depends also on the detuning from resonance of the lattice light. Our results resolve this discrepancy.
We have developed an improved scheme for loading atoms into a magneto-optical trap (MOT) from a directed alkali metal dispenser in < 10^-10 torr ultra-high vacuum conditions. A current-driven dispenser was surrounded with a cold absorbing shroud held at < 0 C, pumping rubidium atoms not directed into the MOT. This nearly eliminates background alkali atoms and reduces the detrimental rise in pressure normally associated with these devices. The system can be well-described as a current-controlled, rapidly-switched, two-temperature thermal beam, and was used to load a MOT with 3 x 10^8 atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا