ترغب بنشر مسار تعليمي؟ اضغط هنا

Far-field resonance fluorescence from a dipole-interacting laser-driven cold atomic gas

248   0   0.0 ( 0 )
 نشر من قبل Beatriz Olmos
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the temporal response of the fluorescence light that is emitted from a dense gas of cold atoms driven by a laser. When the average interatomic distance is smaller than the wavelength of the photons scattered by the atoms, the system exhibits strong dipolar interactions and collective dissipation. We solve the exact dynamics of small systems with different geometries and show how these collective features are manifest in the scattered light properties such as the photon emission rate, the power spectrum and the second-order correlation function. By calculating these quantities beyond the weak driving limit, we make progress in understanding the signatures of collective behavior in these many-body systems. Furthermore, we clarify the role of disorder on the resonance fluorescence, of direct relevance for recent experimental efforts that aim at the exploration of many-body effects in dipole-dipole interacting gases of atoms.



قيم البحث

اقرأ أيضاً

We report investigation of near-resonance light scattering from a cold and dense atomic gas of $^{87}$Rb atoms. Measurements are made for probe frequencies tuned near the $F=2to F=3$ nearly closed hyperfine transition, with particular attention paid to the dependence of the scattered light intensity on detuning from resonance, the number of atoms in the sample, and atomic sample size. We find that, over a wide range of experimental variables, the optical depth of the atomic sample serves as an effective single scaling parameter which describes well all the experimental data.
168 - J. R. Ott , M. Wubs , P. Lodahl 2013
We investigate cooperative fluorescence in a dilute cloud of strongly driven two-level emitters. Starting from the Heisenberg equations of motion, we compute the first-order scattering corrections to the saturation of the excited-state population and to the resonance-fluorescence spectrum, which both require going beyond the state-of-the-art linear-optics approach to describe collective phenomena. A dipole blockade is observed due to long range dipole-dipole coupling that vanishes at stronger driving fields. Furthermore, we compute the inelastic component of the light scattered by a cloud of many atoms and find that the Mollow triplet is affected by cooperativity. In a lobe around the forward direction, the inelastic Mollow triplet develops a spectral asymmetry, observable under experimental conditions.
Besides being a source of energy, light can also cool gases of atoms down to the lowest temperatures ever measured, where atomic motion almost stops. The research field of cold atoms has emerged as a multidisciplinary one, highly relevant, e.g., for precision measurements, quantum gases, simulations of many-body physics, and atom optics. In this focus article, we present the field as seen in 2015, and emphasise the fundamental role in its development that has been played by mastering.
227 - Maryvonne Chalony 2012
A quasi-resonant laser induces a long-range attractive force within a cloud of cold atoms. We take advantage of this force to build in the laboratory a system of particles with a one-dimensional gravitational-like interaction, at a fluid level of mod eling. We give experimental evidences of such an interaction in a cold Strontium gas, studying the density profile of the cloud, its size as a function of the number of atoms, and its breathing oscillations.
We measure the angular dependence of the resonant dipole-dipole interaction between two individual Rydberg atoms with controlled relative positions. By applying a combination of static electric and magnetic fields on the atoms, we demonstrate the pos sibility to isolate a single interaction channel at a Forster resonance, that shows a well-defined angular dependence. We first identify spectroscopically the Forster resonance of choice and we then perform a direct measurement of the interaction strength between the two atoms as a function of the angle between the internuclear axis and the quantization axis. Our results show good agreement with the expected angular dependence $propto(1-3cos^2theta)$, and represent an important step towards quantum state engineering in two-dimensional arrays of individual Rydberg atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا