ﻻ يوجد ملخص باللغة العربية
The Moris memory function approach to spin dynamics in doped antiferromagnetic insulator combined with the assumption of temperature independent static spin correlations and constant collective mode damping leads to w/T scaling in a broad range. The theory involving a nonuniversal scaling parameter is used to analyze recent inelastic neutron scattering results for underdoped cuprates. Adopting modified damping function also the emerging central peak in low-doped cuprates at low temperatures can be explained within the same framework.
We propose a new form of inhomogeneous phases consisting of out-of-phase staggered flux domains separated by diagonal charged domain walls centered on bonds or on sites. Remarkably, such domain flux phases are spin-rotationally symmetric and exhibit
We report a detailed study of the temperature and magnetic-field dependence of the spin susceptibility for a single crystal of La(1.875)Ba(0.125)CuO(4). From a quantitative analysis, we find that the temperature-dependent anisotropy of the suscepti
We investigate the electron momentum distribution function (EMD) in a weakly doped two-dimensional quantum antiferromagnet (AFM) as described by the t-J model. Our analytical results for a single hole in an AFM based on the self-consistent Born appro
Charge order has emerged as a generic feature of doped cuprates, leading to important questions about its origin and its relation to superconductivity. Recent experiments on two classes of hole doped cuprates indicate a novel d-wave symmetry for the
The proposed loop-current order in cuprates cannot give the observed pseudogap and the Fermi-arcs because it preserves translation symmetry. A modification to a periodic arrangement of the four possible orientations of the order parameter with a larg