ﻻ يوجد ملخص باللغة العربية
We propose a new form of inhomogeneous phases consisting of out-of-phase staggered flux domains separated by diagonal charged domain walls centered on bonds or on sites. Remarkably, such domain flux phases are spin-rotationally symmetric and exhibit cone-like quasiparticle dispersion as well as incommensurate order of orbital currents. Such features are consistent with the pseudogap behavior and the diagonal stripes observed experimentally in lightly doped cuprates. A renormalized mean field theory shows that such solutions are competitive candidates within the $t$--$J$ model.
The Moris memory function approach to spin dynamics in doped antiferromagnetic insulator combined with the assumption of temperature independent static spin correlations and constant collective mode damping leads to w/T scaling in a broad range. The
We report a detailed study of the temperature and magnetic-field dependence of the spin susceptibility for a single crystal of La(1.875)Ba(0.125)CuO(4). From a quantitative analysis, we find that the temperature-dependent anisotropy of the suscepti
We investigate the electron momentum distribution function (EMD) in a weakly doped two-dimensional quantum antiferromagnet (AFM) as described by the t-J model. Our analytical results for a single hole in an AFM based on the self-consistent Born appro
We investigate the physics of quasicrystalline models in the presence of a uniform magnetic field, focusing on the presence and construction of topological states. This is done by using the Hofstadter model but with the sites and couplings denoted by
The proposed loop-current order in cuprates cannot give the observed pseudogap and the Fermi-arcs because it preserves translation symmetry. A modification to a periodic arrangement of the four possible orientations of the order parameter with a larg