ترغب بنشر مسار تعليمي؟ اضغط هنا

A strong coupling critique of spin fluctuation driven charge order in underdoped cuprates

568   0   0.0 ( 0 )
 نشر من قبل Vivek Mishra
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Charge order has emerged as a generic feature of doped cuprates, leading to important questions about its origin and its relation to superconductivity. Recent experiments on two classes of hole doped cuprates indicate a novel d-wave symmetry for the order. These were motivated by earlier spin fluctuation theoretical studies based on an expansion about hot spots in the Brillouin zone that indicated such order would be competitive with d-wave superconductivity. Here, we reexamine this problem by solving strong coupling equations in the full Brillouin zone. Our results find that bond-oriented order, as seen experimentally, is strongly suppressed, indicating that the charge order must have a different origin.



قيم البحث

اقرأ أيضاً

We discuss the necessary symmetry conditions and the different ways in which they can be physically realized for the occurrence of ferromagnetism accompanying the loop current orbital magnetic order observed by polarized neutron-diffraction experimen ts or indeed any other conceivable principal order in the under-doped phase of cuprates. We contrast the Kerr effect experiments in single crystals observing ferromagnetism with the direct magnetization measurements in large powder samples, which do not observe it. We also suggest experiments to resolve the differences among the experiments, all of which we believe to be correct.
We report a detailed study of the temperature and magnetic-field dependence of the spin susceptibility for a single crystal of La(1.875)Ba(0.125)CuO(4). From a quantitative analysis, we find that the temperature-dependent anisotropy of the suscepti bility, observed in both the paramagnetic and stripe-ordered phases, directly indicates that localized Cu moments dominate the magnetic response. A field-induced spin-flop transition provides further corroboration for the role of local moments. Contrary to previous analyses of data from polycrystalline samples, we find that a commonly-assumed isotropic and temperature-independent contribution from free carriers, if present, must be quite small. Our conclusion is strengthened by extending the quantitative analysis to include crystals of La(2-x)Ba(x)CuO(4) with x=0.095 and 0.155. On the basis of our results, we present a revised interpretation of the temperature and doping dependence of the spin susceptibility in La(2-x)(Sr,Ba)(x)CuO(4).
To understand the origin of unconventional charge-density-wave (CDW) states in cuprate superconductors, we establish the self-consistent CDW equation, and analyze the CDW instabilities based on the realistic Hubbard model, without assuming any $q$-de pendence and the form factor. Many higher-order many-body processes, which are called the vertex corrections, are systematically generated by solving the CDW equation. When the spin fluctuations are strong, the uniform $q=0$ nematic CDW with $d$-form factor shows the leading instability. The axial nematic CDW instability at $q = Q_a = (delta,0)$ ($delta approx pi/2$) is the second strongest, and its strength increases under the static uniform CDW order. The present theory predicts that uniform CDW transition emerges at a high temperature, and it stabilize the axial $q = Q_a$ CDW at $T = T_{CDW}$. It is confirmed that the higher-order Aslamazov-Larkin processes cause the CDW orders at both $q = 0$ and $Q_a$.
380 - T. Senthil , P. A. Lee 2009
The underdoped cuprates have a number of interesting and unusual properties that often seem hard to reconcile with one another. In this paper we show how many of these diverse phenomena can be synthesized into a single coherent theoretical picture. S pecifically we present a description where a pseudogap and gapless Fermi arcs exist in the normal state above the superconducting transition temperature ($T_c$), but give way to the observed quantum oscillations and other phenomena at low temperature when the superconductivity is suppressed by a magnetic field. We show the consistency between these phenomena and observations of enhanced Nernst and diamagnetic signals above $T_c$. We also develop a description of the vortex core inside the superconducting state and discuss its relation with the high field phenomena.
The enigmatic cuprate superconductors have attracted resurgent interest with several recent reports and discussions of competing orders in the underdoped side. Motivated by this, here we address the natural question of fragility of the d-wave superco nducting state in underdoped cuprates. Using a combination of theoretical approaches we study t-J like models, and discover an - as yet unexplored - instability that is brought about by an internal (anti-symmetric mode) fluctuation of the d-wave state. This new theoretical result is in good agreement with recent STM and ARPES studies of cuprates. We also suggest experimental directions to uncover this physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا