ﻻ يوجد ملخص باللغة العربية
We investigate the electron momentum distribution function (EMD) in a weakly doped two-dimensional quantum antiferromagnet (AFM) as described by the t-J model. Our analytical results for a single hole in an AFM based on the self-consistent Born approximation (SCBA) indicate an anomalous momentum dependence of EMD showing hole pockets coexisting with a signature of an emerging large Fermi surface. The position of the incipient Fermi surface and the structure of the EMD is determined by the momentum of the ground state. Our analysis shows that this result remains robust in the presence of next-nearest neighbor hopping terms in the model. Exact diagonalization results for small clusters are with the SCBA reproduced quantitatively.
The Moris memory function approach to spin dynamics in doped antiferromagnetic insulator combined with the assumption of temperature independent static spin correlations and constant collective mode damping leads to w/T scaling in a broad range. The
The proposed loop-current order in cuprates cannot give the observed pseudogap and the Fermi-arcs because it preserves translation symmetry. A modification to a periodic arrangement of the four possible orientations of the order parameter with a larg
We present an approximation for efficient calculation of the Lindhard susceptibility $chi^{L}(q,omega)$ in a periodic system through the use of simple products of real space functions and the fast Fourier transform (FFT). The method is illustrated by
We discuss the necessary symmetry conditions and the different ways in which they can be physically realized for the occurrence of ferromagnetism accompanying the loop current orbital magnetic order observed by polarized neutron-diffraction experimen
The enigmatic cuprate superconductors have attracted resurgent interest with several recent reports and discussions of competing orders in the underdoped side. Motivated by this, here we address the natural question of fragility of the d-wave superco