ﻻ يوجد ملخص باللغة العربية
We report a detailed study of the temperature and magnetic-field dependence of the spin susceptibility for a single crystal of La(1.875)Ba(0.125)CuO(4). From a quantitative analysis, we find that the temperature-dependent anisotropy of the susceptibility, observed in both the paramagnetic and stripe-ordered phases, directly indicates that localized Cu moments dominate the magnetic response. A field-induced spin-flop transition provides further corroboration for the role of local moments. Contrary to previous analyses of data from polycrystalline samples, we find that a commonly-assumed isotropic and temperature-independent contribution from free carriers, if present, must be quite small. Our conclusion is strengthened by extending the quantitative analysis to include crystals of La(2-x)Ba(x)CuO(4) with x=0.095 and 0.155. On the basis of our results, we present a revised interpretation of the temperature and doping dependence of the spin susceptibility in La(2-x)(Sr,Ba)(x)CuO(4).
Charge order has emerged as a generic feature of doped cuprates, leading to important questions about its origin and its relation to superconductivity. Recent experiments on two classes of hole doped cuprates indicate a novel d-wave symmetry for the
Several experimental and theoretical studies indicate the existence of a critical point separating the underdoped and overdoped regions of the high-T_c cuprates phase diagram. There are at least two distinct proposals on the critical concentration an
A systematic inelastic neutron scattering study of the superexchange interaction in three different undoped monolayer cuprates (La_2CuO_4, Nd_2CuO_4 and Pr_2CuO_4) has been performed using conventional triple axis technique. We deduce the in-plane an
In the stripe-ordered state of a strongly-correlated two-dimensional electronic system, under a set of special circumstances, the superconducting condensate, like the magnetic order, can occur at a non-zero wave-vector corresponding to a spatial peri
The underdoped cuprates have a number of interesting and unusual properties that often seem hard to reconcile with one another. In this paper we show how many of these diverse phenomena can be synthesized into a single coherent theoretical picture. S