ﻻ يوجد ملخص باللغة العربية
We consider the radial energy-critical non-linear focusing Schrodinger equation in dimension N=3,4,5. An explicit stationnary solution, W, of this equation is known. In a previous work by C. Carlos and F. Merle, the energy E(W) has been shown to be a threshold for the dynamical behavior of solutions of the equation. In the present article, we study the dynamics at the critical level E(u)=E(W) and classify the corresponding solutions. This gives in particular a dynamical characterization of W.
We consider the focusing energy critical NLS with inverse square potential in dimension $d= 3, 4, 5$ with the details given in $d=3$ and remarks on results in other dimensions. Solutions on the energy surface of the ground state are characterized. We
We consider the energy-critical non-linear focusing wave equation in dimension N=3,4,5. An explicit stationnary solution, $W$, of this equation is known. The energy E(W,0) has been shown by C. Kenig and F. Merle to be a threshold for the dynamical be
The present paper is concerned with the large data scattering problem for the mass-energy double critical NLS begin{align} ipartial_t u+Delta upm |u|^{frac{4}{d}}upm |u|^{frac{4}{d-2}}u=0tag{DCNLS} end{align} in $H^1(mathbb{R}^d)$ with $dgeq 3$. In t
We prove scattering below the ground state threshold for an energy-critical inhomogeneous nonlinear Schrodinger equation in three space dimensions. In particular, we extend results of Cho, Hong, and Lee from the radial to the non-radial setting.
We adapt the arguments in the recent work of Duyckaerts, Landoulsi, and Roudenko to establish a scattering result at the sharp threshold for the $3d$ focusing cubic NLS with a repulsive potential. We treat both the case of short-range potentials as p