ترغب بنشر مسار تعليمي؟ اضغط هنا

Threshold scattering for the focusing NLS with a repulsive potential

156   0   0.0 ( 0 )
 نشر من قبل Jason Murphy
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We adapt the arguments in the recent work of Duyckaerts, Landoulsi, and Roudenko to establish a scattering result at the sharp threshold for the $3d$ focusing cubic NLS with a repulsive potential. We treat both the case of short-range potentials as previously considered in the work of Hong, as well as the inverse-square potential, previously considered in the work of the authors.



قيم البحث

اقرأ أيضاً

281 - Yongming Luo 2021
We consider the large data scattering problem for the 2D and 3D cubic-quintic NLS in the focusing-focusing regime. Our attention is firstly restricted to the 2D space, where the cubic nonlinearity is $L^2$-critical. We establish a new type of scatter ing criterion that is uniquely determined by the mass of the initial data, which differs from the classical setting based on the Lyapunov functional. At the end, we also formulate a solely mass-determining scattering threshold for the 3D cubic-quintic NLS in the focusing-focusing regime.
We consider the focusing energy critical NLS with inverse square potential in dimension $d= 3, 4, 5$ with the details given in $d=3$ and remarks on results in other dimensions. Solutions on the energy surface of the ground state are characterized. We prove that solutions with kinetic energy less than that of the ground state must scatter to zero or belong to the stable/unstable manifolds of the ground state. In the latter case they converge to the ground state exponentially in the energy space as $tto infty$ or $tto -infty$. (In 3-dim without radial assumption, this holds under the compactness assumption of non-scattering solutions on the energy surface.) When the kinetic energy is greater than that of the ground state, we show that all radial $H^1$ solutions blow up in finite time, with the only two exceptions in the case of 5-dim which belong to the stable/unstable manifold of the ground state. The proof relies on the detailed spectral analysis, local invariant manifold theory, and a global Virial analysis.
We consider the nonlinear Schrodinger equation in three space dimensions with combined focusing cubic and defocusing quintic nonlinearity. This problem was considered previously by Killip, Oh, Pocovnicu, and Visan, who proved scattering for the whole region of the mass/energy plane where the virial quantity is guaranteed to be positive. In this paper we prove scattering in a larger region where the virial quantity is no longer guaranteed to be sign definite.
92 - Xiaofen Gao , Chengbin Xu 2019
In this paper, we study the long time behavior of the solution of nonlinear Schrodinger equation with a singular potential. We prove scattering below the ground state for the radial NLS with inverse-square potential in dimension two $$iu_t+Delta u- frac{a u}{|x|^2}= -|u|^pu$$ when $2<p<infty$ and $a>0$. This work extends the result in [13, 14, 16] to dimension 2D. The key point is a modified version of Arora-Dodson-Murphys approach [2].
In this article, we consider the focusing cubic nonlinear Schrodinger equation(NLS) in the exterior domain outside of a convex obstacle in $mathbb{R}^3$ with Dirichlet boundary conditions. We revisit the scattering result below ground state of Killip -Visan-Zhang by utilizing Dodson and Murphys argument and the dispersive estimate established by Ivanovici and Lebeau, which avoids using the concentration compactness. We conquer the difficulty of the boundary in the focusing case by establishing a local smoothing effect of the boundary. Based on this effect and the interaction Morawetz estimates, we prove the solution decays at a large time interval, which meets the scattering criterions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا