ﻻ يوجد ملخص باللغة العربية
We consider the focusing energy critical NLS with inverse square potential in dimension $d= 3, 4, 5$ with the details given in $d=3$ and remarks on results in other dimensions. Solutions on the energy surface of the ground state are characterized. We prove that solutions with kinetic energy less than that of the ground state must scatter to zero or belong to the stable/unstable manifolds of the ground state. In the latter case they converge to the ground state exponentially in the energy space as $tto infty$ or $tto -infty$. (In 3-dim without radial assumption, this holds under the compactness assumption of non-scattering solutions on the energy surface.) When the kinetic energy is greater than that of the ground state, we show that all radial $H^1$ solutions blow up in finite time, with the only two exceptions in the case of 5-dim which belong to the stable/unstable manifold of the ground state. The proof relies on the detailed spectral analysis, local invariant manifold theory, and a global Virial analysis.
We consider the radial energy-critical non-linear focusing Schrodinger equation in dimension N=3,4,5. An explicit stationnary solution, W, of this equation is known. In a previous work by C. Carlos and F. Merle, the energy E(W) has been shown to be a
In this paper, we study the long time behavior of the solution of nonlinear Schrodinger equation with a singular potential. We prove scattering below the ground state for the radial NLS with inverse-square potential in dimension two $$iu_t+Delta u-
In this paper, we study the scattering theory for the cubic inhomogeneous Schrodinger equations with inverse square potential $iu_t+Delta u-frac{a}{|x|^2}u=lambda |x|^{-b}|u|^2u$ with $a>-frac14$ and $0<b<1$ in dimension three. In the defocusing case
We adapt the arguments in the recent work of Duyckaerts, Landoulsi, and Roudenko to establish a scattering result at the sharp threshold for the $3d$ focusing cubic NLS with a repulsive potential. We treat both the case of short-range potentials as p
We consider the energy-critical non-linear focusing wave equation in dimension N=3,4,5. An explicit stationnary solution, $W$, of this equation is known. The energy E(W,0) has been shown by C. Kenig and F. Merle to be a threshold for the dynamical be