ﻻ يوجد ملخص باللغة العربية
The present paper is concerned with the large data scattering problem for the mass-energy double critical NLS begin{align} ipartial_t u+Delta upm |u|^{frac{4}{d}}upm |u|^{frac{4}{d-2}}u=0tag{DCNLS} end{align} in $H^1(mathbb{R}^d)$ with $dgeq 3$. In the defocusing-defocusing regime, Tao, Visan and Zhang show that the unique solution of DCNLS is global and scattering in time for arbitrary initial data in $H^1(mathbb{R}^d)$. This does not hold when at least one of the nonlinearities is focusing, due to the possible formation of blow-up and soliton solutions. However, precise thresholds for a solution of DCNLS being scattering were open in all the remaining regimes. Following the classical concentration compactness principle, we impose sharp scattering thresholds in terms of ground states for DCNLS in all the remaining regimes. The new challenge arises from the fact that the remainders of the standard $L^2$- or $dot{H}^1$-profile decomposition fail to have asymptotically vanishing diagonal $L^2$- and $dot{H}^1$-Strichartz norms simultaneously. To overcome this difficulty, we construct a double track profile decomposition which is capable to capture the low, medium and high frequency bubbles within a single profile decomposition and possesses remainders that are asymptotically small in both of the diagonal $L^2$- and $dot{H}^1$-Strichartz spaces.
We extend the scattering result for the radial defocusing-focusing mass-energy double critical nonlinear Schrodinger equation in $dleq 4$ given by Cheng et al. to the case $dgeq 5$. The main ingredient is a suitable long time perturbation theory whic
We consider the radial energy-critical non-linear focusing Schrodinger equation in dimension N=3,4,5. An explicit stationnary solution, W, of this equation is known. In a previous work by C. Carlos and F. Merle, the energy E(W) has been shown to be a
We consider the large data scattering problem for the 2D and 3D cubic-quintic NLS in the focusing-focusing regime. Our attention is firstly restricted to the 2D space, where the cubic nonlinearity is $L^2$-critical. We establish a new type of scatter
We prove scattering below the ground state threshold for an energy-critical inhomogeneous nonlinear Schrodinger equation in three space dimensions. In particular, we extend results of Cho, Hong, and Lee from the radial to the non-radial setting.
We consider the focusing energy critical NLS with inverse square potential in dimension $d= 3, 4, 5$ with the details given in $d=3$ and remarks on results in other dimensions. Solutions on the energy surface of the ground state are characterized. We