ﻻ يوجد ملخص باللغة العربية
We prove scattering below the ground state threshold for an energy-critical inhomogeneous nonlinear Schrodinger equation in three space dimensions. In particular, we extend results of Cho, Hong, and Lee from the radial to the non-radial setting.
We extend the result of Farah and Guzman on scattering for the $3d$ cubic inhomogeneous NLS to the non-radial setting. The key new ingredient is a construction of scattering solutions corresponding to initial data living far from the origin.
In this paper, we study the long-time behavior of global solutions to the Schrodinger-Choquard equation $$ipartial_tu+Delta u=-(I_alphaast|cdot|^b|u|^{p})|cdot|^b|u|^{p-2}u.$$ Inspired by Murphy, who gave a simple proof of scattering for the non-ra
We adapt the argument of Dodson-Murphy to give a simple proof of scattering below the ground state for the intercritical inhomogeneous nonlinear Schrodinger equation. The decaying factor in the nonlinearity obviates the need for a radial assumption.
We consider the radial energy-critical non-linear focusing Schrodinger equation in dimension N=3,4,5. An explicit stationnary solution, W, of this equation is known. In a previous work by C. Carlos and F. Merle, the energy E(W) has been shown to be a
In this paper, we study the scattering theory for the cubic inhomogeneous Schrodinger equations with inverse square potential $iu_t+Delta u-frac{a}{|x|^2}u=lambda |x|^{-b}|u|^2u$ with $a>-frac14$ and $0<b<1$ in dimension three. In the defocusing case