سنفرض أن الدالة f دورية و كمولة لوبيغيا , سنقدم في هذا البحث مبرهنتين حول قابلية متساسلة فورييه و مرافقتها بالطريقة المصفوفية التقريبية, و تعمم دراستنا جميع النتائج المعروفة سابقا في هذا المجال.
Let f be a periodic function and integrable, in
thesense of Lebesgue.In this paper, quite new theorems on
almost Matrix summability of Fourier series and its conjugate
have been established. our study generalizes all previously
known results of this line of work
المراجع المستخدمة
S. lal, M. prabhakar, 2000, " on the degree of approximation of conjugate Of a function belonging to weighted ( ( )) Class by matrix summability means of Conjugate series of a fourier series", (279- 288)
S. lal, 2004, 2, on the approximation of function belonging to weighted ( ( )) class by almost matrix summability method of its fourier series ", (67-76)
H. k. nigam. A sharma, 2013, 82, " a study on almost matrix summability of fourier-jacobi series ", (89-106)
هناك أنواع عديدة من المعاييلا و ضمن شروط متنوعة لقابلية جمع مشتقة متسلسلة فورييه و مرافقتها بطريقة نيورلند, قد تم أخذها من قبل Hille و Tamarkin عام 1932 و Astrachan عام 1936 و Prasad و Siddiqi عام 1950, و سوف ندرس هنا نوع هام و مختلف من المعايير لقاب
في هذا البحث نقوم بدراسة قابلية جمع متسلسلة فورييه ( و تدعى معاملات فورييه ), و ذلك بالطريقة المصفوفية.
سيتم عرض هذه الطريقة من خلال مبرهنة مع إثباتها, و لكن بعد وضع التعاريف
و المفاهيم الأساسية اللازمة لذلك.
تعد متسلسلات فورييه المثلثية إحدى الدراسات الهامة في التحليل الحديث وقد برزت هذه المتسلسلات لاول مرة عند دراسة العالم برنوبي للأوتار المهتزة عام (1753)
في هذا البحث نقدم طريقة فورييه الطيفية لحل المعادلات التفاضلية ( سنطبق الطريقة على معادلة تفاضلية عادية ) إذ سنقوم في القسم الأول بعرض تحويل فورييه , في القسم الثاني سنعرض خصائص التقريب و نطبق هذه الطريقة على مثال عددي للتحقق من النتائج في القسم الثا
ندرسُ فُي هذا اُلبحث تُقارب متسلسلات فورييه - هاآر لدوال مشتقاتها مستمرة, وُ لدواب بُعدّة مُتغيرات ذُات مُشتقُّات جُزئيُّة مُستمرُّةُ.