ترغب بنشر مسار تعليمي؟ اضغط هنا

تعزيز النقل عبر اللغات عبر التعلم الذاتي مع تقدير عدم اليقين

Boosting Cross-Lingual Transfer via Self-Learning with Uncertainty Estimation

288   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

حققت نماذج اللغة المرجعة متعددة اللغات متعددة اللغات مؤخرا أداءا ملحوظا عن الصفر، حيث يتم تقسيم النموذج فقط في لغة مصدر واحدة وتقييمها مباشرة على اللغات المستهدفة.في هذا العمل، نقترح إطارا للتعليم الذاتي الذي يستخدم البيانات غير المستهدفة من اللغات المستهدفة، بالإضافة إلى تقدير عدم اليقين في هذه العملية لتحديد ملصقات فضية عالية الجودة.يتم تكييف وثلاثة أوجه عدم اليقين الثلاثة وتحليلها خصيصا للتحويل اللغوي الصليب: لغة عدم اليقين المتنوعة من اللغة (LEU / LOU)، عدم اليقين الواضح (EVI).نقوم بتقييم إطار عملنا مع عدم اليقين على مهمتين متوقعتين بما في ذلك التعرف على الكيانات المسماة (NER) والاستدلال اللغوي الطبيعي (NLI) (NLI) (NLI) (NLI) تغطي 40 لغة في المجموع، والتي تتفوق على خطوط الأساس بشكل كبير بمقدار 10 F1 من دقة NLI.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تشفير لغة متعددة اللغات المدربة مسبقا، مثل Bert متعدد اللغات و XLM-R، إظهار إمكانات كبيرة للتحويل الصفر - عبر اللغات. ومع ذلك، فإن هذه اللوائح متعددة اللغات لا تحيي بالتحديد الكلمات والعبارات عبر اللغات. على وجه الخصوص، يتطلب محاذاة التعلم في مساحة ا لتضمين متعددة اللغات عادة على مستوى الجملة أو المستوى الموازي على مستوى Word، وهي مكلفة يتم الحصول عليها لغات الموارد المنخفضة. بديل هو جعل التشفير متعددة اللغات أكثر قوة؛ عند ضبط التشفير باستخدام المهمة المصدرة للمهمة، نربط التشفير لتتسامح مع الضوضاء في المساحات التضمين السياقية بحيث لا تتماشى تمثيلات اللغات المختلفة بشكل جيد، لا يزال بإمكان النموذج تحقيق أداء جيد على الصفر بالرصاص عبر اللغات نقل. في هذا العمل، نقترح استراتيجية تعليمية لتدريب النماذج القوية عن طريق رسم الروابط بين الأمثلة الخصومة وحالات فشل النقل الصفرية عبر اللغات. نعتمد اثنين من أساليب التدريب القوية المستخدمة على نطاق واسع، والتدريب الخصوم والتنعيم العشوائي، لتدريب النموذج القوي المرغوب فيه. توضح النتائج التجريبية أن التدريب القوي يحسن نقل صفرية عبر اللغات على مهام تصنيف النص. التحسن هو أكثر أهمية في إعداد النقل المتبادل المعمم، حيث ينتمي زوج جمل المدخلات إلى لغتين مختلفة.
نحن نتطلع إلى مهمة اكتشاف الكلام الكراهية التلقائي لغات الموارد المنخفضة.بدلا من جمع وإشراف بيانات خطاب الكراهية الجديدة، نوضح كيفية استخدام التعلم عبر التحويلات عبر اللغات للاستفادة من البيانات الموجودة بالفعل من لغات الموارد العالية.باستخدام مصنفات مقرها Word من Word، نحقق الأداء الجيد على اللغة المستهدفة من خلال التدريب فقط على مجموعة بيانات المصدر.باستخدام نظامنا المنقول، نحن Bootstrap على بيانات اللغة المستهدفة غير المستهدفة، وتحسين أداء نهج النقل المتبادل القياسي.نحن نستخدم اللغة الإنجليزية كلغة موارد عالية والألمانية مثل اللغة المستهدفة التي تتوفر فقط كمية صغيرة من كورسا المشروح.تشير نتائجنا إلى أن التعلم عبر التحويلات الشاملة للتعلم مع نهجنا للاستفادة من البيانات الإضافية غير المسبقة هي وسيلة فعالة لتحقيق الأداء الجيد على لغات مستهدفة منخفضة الموارد دون الحاجة إلى أي شروح لغة الهدف.
حققت نماذج التضمين السياقية المدربة مسبقا متعددة اللغات (Devlin et al.، 2019) أداء مثير للإعجاب على مهام نقل اللغات الصفرية.من خلال إيجاد استراتيجية ضبط الدقيقة الأكثر فعالية لضبط هذه النماذج على لغات الموارد عالية الموارد بحيث تقوم بتحويلاتها جيدا ل غات اللغات الصفرية هي مهمة غير تافهة.في هذه الورقة، نقترح رواية ميتا المحسن إلى طبقات ناعمة في طبقات النموذج المدرب مسبقا لتجميدها أثناء الضبط.نحن ندرب ميتا المحسن عن طريق محاكاة سيناريو نقل الصفر بالرصاص.تشير النتائج على الاستدلال اللغوي المتبادل اللغوي إلى أن نهجنا يحسن على خط الأساس البسيط للضبط و X-Maml (Nooralahzadeh et al.، 2020).
نحن ندرس مشكلة استخراج وسيطة الأحداث عبر اللغات (CEAE). تهدف المهمة إلى التنبؤ بأدوار حجة من يذكر الأحداث في النص، والتي تختلف لغتها عن اللغة التي تم تدريبها على نموذج تنبؤي. أظهر العمل السابق على CEAE الفوائد المتبادلة لأشجار الاعتماد الشامل في التق اط الهياكل النحوية المشتركة للجمل عبر اللغات. على وجه الخصوص، يستغل هذا العمل وجود الاتصالات النحوية بين الكلمات في أشجار التبعية كمعرفة مرساة لنقل التمثيل تعلم عبر اللغات لنماذج CEAE (I.E.، عبر الرسوم البيانية الشبكات العصبية العلاجية - GCNS). في هذه الورقة، نقدم مصادر رواية معلومات مستقلة من اللغة للحصول على نماذج CEAE بناء على التشابه الدلالي وعلاقات التبعية الشاملة في Word Pairs بلغات مختلفة. نقترح استخدام مصادر المعلومات لإنتاج هياكل جملة مشتركة لسد الفجوة بين اللغات وتحسين الأداء المتبادل لنماذج CEAE. يتم إجراء تجارب واسعة مع اللغة العربية والصينية والإنجليزية لإظهار فعالية الطريقة المقترحة للحصول على CEAE.
تحدث نماذج لغة متعددة اللغات بدقة مثيرة للإعجاب بدقة في العديد من اللغات في مهام معقدة مثل الاستدلال اللغوي الطبيعي (NLI).غالبا ما تتعلق أمثلة في المهام المعقدة المكافئة (وما يعادلها) أنواعا مختلفة من المهام الفرعية، والتي تتطلب أنواعا مختلفة من التف كير.لقد أثبتت أنواع معينة من التفكير أكثر صعوبة في التعلم في سياق أحادي الأونلينغ، وفي السياق crosslingual، قد تسليف الملاحظات المماثلة الضوء على كفاءة نقل صفرية ومختيار عينة قليلة.وبالتالي، للتحقيق في آثار أنواع المنطق في أداء النقل، نقترح مجموعة بيانات NLI متعددة اللغات متعددة الفئات ومناقشة التحديات اللازمة لتوسيع نطاق التعليقات التوضيحية أحادية الأونلينغ إلى لغات متعددة.نلاحظ إحصائيا تأثيرات مثيرة للاهتمام أن التقاء أنواع المنطق وأشابه لغة لها على أداء نقل.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا