ترغب بنشر مسار تعليمي؟ اضغط هنا

تحليل آثار أنواع المنطق على أداء النقل عبر اللغات

Analyzing the Effects of Reasoning Types on Cross-Lingual Transfer Performance

481   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تحدث نماذج لغة متعددة اللغات بدقة مثيرة للإعجاب بدقة في العديد من اللغات في مهام معقدة مثل الاستدلال اللغوي الطبيعي (NLI).غالبا ما تتعلق أمثلة في المهام المعقدة المكافئة (وما يعادلها) أنواعا مختلفة من المهام الفرعية، والتي تتطلب أنواعا مختلفة من التفكير.لقد أثبتت أنواع معينة من التفكير أكثر صعوبة في التعلم في سياق أحادي الأونلينغ، وفي السياق crosslingual، قد تسليف الملاحظات المماثلة الضوء على كفاءة نقل صفرية ومختيار عينة قليلة.وبالتالي، للتحقيق في آثار أنواع المنطق في أداء النقل، نقترح مجموعة بيانات NLI متعددة اللغات متعددة الفئات ومناقشة التحديات اللازمة لتوسيع نطاق التعليقات التوضيحية أحادية الأونلينغ إلى لغات متعددة.نلاحظ إحصائيا تأثيرات مثيرة للاهتمام أن التقاء أنواع المنطق وأشابه لغة لها على أداء نقل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

حققت نماذج اللغة المرجعة متعددة اللغات متعددة اللغات مؤخرا أداءا ملحوظا عن الصفر، حيث يتم تقسيم النموذج فقط في لغة مصدر واحدة وتقييمها مباشرة على اللغات المستهدفة.في هذا العمل، نقترح إطارا للتعليم الذاتي الذي يستخدم البيانات غير المستهدفة من اللغات ا لمستهدفة، بالإضافة إلى تقدير عدم اليقين في هذه العملية لتحديد ملصقات فضية عالية الجودة.يتم تكييف وثلاثة أوجه عدم اليقين الثلاثة وتحليلها خصيصا للتحويل اللغوي الصليب: لغة عدم اليقين المتنوعة من اللغة (LEU / LOU)، عدم اليقين الواضح (EVI).نقوم بتقييم إطار عملنا مع عدم اليقين على مهمتين متوقعتين بما في ذلك التعرف على الكيانات المسماة (NER) والاستدلال اللغوي الطبيعي (NLI) (NLI) (NLI) (NLI) تغطي 40 لغة في المجموع، والتي تتفوق على خطوط الأساس بشكل كبير بمقدار 10 F1 من دقة NLI.
حققت المحولات التي تم تدريبها مسبقا على شركة متعددة اللغات، مثل MBERT و XLM-ROBERTA، قدرات نقل متبقية مثيرة للإعجاب. في إعداد نقل الطلقة الصفرية، يتم استخدام بيانات التدريب الإنجليزية فقط، ويتم تقييم النموذج الدقيق على لغة مستهدفة أخرى. على الرغم من أن هذا يعمل بشكل جيد بشكل مدهش، فقد تمت ملاحظة تباين كبير في الأداء اللغوي المستهدف بين مختلف عمليات التشغيل الدقيقة، وفي إعداد الطلقة الصفرية، لا توجد بيانات تطوير اللغة المستهدفة متاحة للتحديد بين نماذج متعددة ذات الضبط. اعتمد العمل المسبق على بيانات Dev الإنجليزية لتحديد بين النماذج التي تم ضبطها بشكل جيد مع معدلات التعلم المختلفة وعدد الخطوات وغيرها من أنواع التشعبات، والتي غالبا ما تؤدي إلى اختيارات فرعية نفسها. في هذه الورقة، نوضح أنه من الممكن تحديد نماذج أفضل باستمرار عند توفر كميات صغيرة من البيانات المشروحة بلغات محورية إضافية. نقترح نهجا للتعلم الآلي للاختيار النموذجي الذي يستخدم التمثيلات الداخلية للأنظمة ذات الطراز الدقيق للتنبؤ بقدراتها المتبادلة. في تجارب شاملة، نجد أن هذه الطريقة تختار باستمرار نماذج أفضل من بيانات التحقق من صحة اللغة الإنجليزية عبر عشرين لغة (بما في ذلك 8 لغات منخفضة الموارد)، وغالبا ما تحقق النتائج التي تتميز باختيار نموذج باستخدام بيانات تطوير اللغة المستهدفة.
نحن ندرس مشكلة استخراج وسيطة الأحداث عبر اللغات (CEAE). تهدف المهمة إلى التنبؤ بأدوار حجة من يذكر الأحداث في النص، والتي تختلف لغتها عن اللغة التي تم تدريبها على نموذج تنبؤي. أظهر العمل السابق على CEAE الفوائد المتبادلة لأشجار الاعتماد الشامل في التق اط الهياكل النحوية المشتركة للجمل عبر اللغات. على وجه الخصوص، يستغل هذا العمل وجود الاتصالات النحوية بين الكلمات في أشجار التبعية كمعرفة مرساة لنقل التمثيل تعلم عبر اللغات لنماذج CEAE (I.E.، عبر الرسوم البيانية الشبكات العصبية العلاجية - GCNS). في هذه الورقة، نقدم مصادر رواية معلومات مستقلة من اللغة للحصول على نماذج CEAE بناء على التشابه الدلالي وعلاقات التبعية الشاملة في Word Pairs بلغات مختلفة. نقترح استخدام مصادر المعلومات لإنتاج هياكل جملة مشتركة لسد الفجوة بين اللغات وتحسين الأداء المتبادل لنماذج CEAE. يتم إجراء تجارب واسعة مع اللغة العربية والصينية والإنجليزية لإظهار فعالية الطريقة المقترحة للحصول على CEAE.
على الرغم من أن التطورات الأخيرة في الهندسة العصبية والتمثيلات المدربة مسبقا قد زادت بشكل كبير من الأداء النموذجي للحدث على وضع العلامات الدلالية الخاضعة للإشراف بالكامل (SRL)، فإن المهمة تظل تحديا لغات حيث تكون بيانات تدريب SRL الإشرافية غير وفيرة.ي مكن للتعلم عبر اللغات تحسين الأداء في هذا الإعداد عن طريق نقل المعرفة من لغات الموارد عالية الموارد إلى الموارد المنخفضة.علاوة على ذلك، فإننا نفترض أن شرطية التبعيات النحوية يمكن أن يتم الاستفادة منها لتسهيل نقل عبر اللغات.في هذا العمل، نقوم بإجراء عملية استكشاف تجريبي لمساعدة الإشراف النحوي عن Crosslingual SRL ضمن مخطط تعليمي بسيط متعدد الأيتاح.مع التقييمات الشاملة عبر عشرة لغات (بالإضافة إلى اللغة الإنجليزية) وثلاثة بيانات معيار SRL، بما في ذلك SRL على حد سواء SRL المستندة إلى التبعية والمقرها، فإننا نعرض فعالية الإشراف النحامي في سيناريوهات منخفضة الموارد.
نحن نتطلع إلى مهمة اكتشاف الكلام الكراهية التلقائي لغات الموارد المنخفضة.بدلا من جمع وإشراف بيانات خطاب الكراهية الجديدة، نوضح كيفية استخدام التعلم عبر التحويلات عبر اللغات للاستفادة من البيانات الموجودة بالفعل من لغات الموارد العالية.باستخدام مصنفات مقرها Word من Word، نحقق الأداء الجيد على اللغة المستهدفة من خلال التدريب فقط على مجموعة بيانات المصدر.باستخدام نظامنا المنقول، نحن Bootstrap على بيانات اللغة المستهدفة غير المستهدفة، وتحسين أداء نهج النقل المتبادل القياسي.نحن نستخدم اللغة الإنجليزية كلغة موارد عالية والألمانية مثل اللغة المستهدفة التي تتوفر فقط كمية صغيرة من كورسا المشروح.تشير نتائجنا إلى أن التعلم عبر التحويلات الشاملة للتعلم مع نهجنا للاستفادة من البيانات الإضافية غير المسبقة هي وسيلة فعالة لتحقيق الأداء الجيد على لغات مستهدفة منخفضة الموارد دون الحاجة إلى أي شروح لغة الهدف.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا