يتم تدريب معظم أنظمة الترجمة الآلية المتزامنة (SIMT) وتقييمها في Offline Translation Corpora.نحن نقول أن أنظمة SIMT يجب تدريبها واختبارها على بيانات التفسير الحقيقي.لتوضيح هذه الحجة، نقترح مجموعة اختبار التفسير وإجراء تقييم واقعي ل Simt المدربة على الترجمات دون اتصال.نتائجنا، في الاختبار المحدد لدينا مع 3 أزواج لغة صغيرة الحجم الحالية، تسليط الضوء على الفرق من النتيجة حتى 13.83 بلو عند تقييم نماذج Simt على بيانات الترجمة الشفوية للترجمة.في غياب بيانات التدريب على الترجمة الشفوية، نقترح طريقة نقل نمط الترجمة إلى الترجمة إلى الترجمة (T2I) التي تسمح بتحويل الترجمات غير المتصلة حاليا إلى بيانات نمط الترجمة الشفوية، مما يؤدي إلى تحسن ما يصل إلى 2.8 بلو.ومع ذلك، لا تزال فجوة التقييم ملحوظة، ودعا إلى بناء تفسير واسع النطاق مناسبة بشكل أفضل لتقييم وتطوير أنظمة SIMT.
Most existing simultaneous machine translation (SiMT) systems are trained and evaluated on offline translation corpora. We argue that SiMT systems should be trained and tested on real interpretation data. To illustrate this argument, we propose an interpretation test set and conduct a realistic evaluation of SiMT trained on offline translations. Our results, on our test set along with 3 existing smaller scale language pairs, highlight the difference of up-to 13.83 BLEU score when SiMT models are evaluated on translation vs interpretation data. In the absence of interpretation training data, we propose a translation-to-interpretation (T2I) style transfer method which allows converting existing offline translations into interpretation-style data, leading to up-to 2.8 BLEU improvement. However, the evaluation gap remains notable, calling for constructing large-scale interpretation corpora better suited for evaluating and developing SiMT systems.
المراجع المستخدمة
https://aclanthology.org/
نقترح إطارا عاما للترجمة الآلية المتزامنة.تستخدم النهج التقليدية عددا ثابتا من الكلمات المصدر لترجمة أو تعلم السياسات الديناميكية لعدد الكلمات المصدر عن طريق التعلم التعزيز.نحن هنا صياغة ترجمة متزامنة كمشكلة تعلم التسلسل الهيكلية إلى التسلسل.يتم تقدي
اكتسبت الترجمة الآلية المتزامنة الجر مؤخرا، بفضل تحسينات الجودة المهمة ومختام تطبيقات البث.تحتاج أنظمة الترجمة المتزامنة إلى إيجاد مفاضلة بين جودة الترجمة ووقت الاستجابة، وبالتالي تم اقتراح تدابير الكمون المتعددة.ومع ذلك، يتم تقدير تقييمات الكمون للت
في هذه الورقة، نظهر أن الأسئلة والأجوبة التي تم إنشاؤها تلقائيا يمكن استخدامها لتقييم جودة أنظمة الترجمة الآلية (MT).بناء على العمل الحديث على تقييم تلخيص نص مبيعات، نقترح مقياس جديد لتقييم MT على مستوى النظام، ومقارنته بالحلول الأخرى الأخرى، وإظهار متانة لها من خلال إجراء تجارب لمختلف اتجاهات MT.
نحن ندرس مشكلة تكيف المجال في الترجمة الآلية العصبية (NMT) عند مشاركة البيانات الخاصة بالمجال بسبب سرية أو مشكلات حقوق النشر.كخطوة أولى، نقترح بيانات الشظية في أزواج العبارة واستخدام عينة عشوائية لحن نموذج NMT عام بدلا من الجمل الكاملة.على الرغم من ف
في الترجمة الآلية المتزامنة، والعثور على وكيل مع تسلسل العمل الأمثل للقراءة والكتابة التي تحتفظ بمستوى عال من جودة الترجمة مع التقليل من التأخر المتوسط في إنتاج الرموز المستهدفة لا يزال مشكلة صعبة للغاية. نقترح نهج تعليمي تحت إشراف رواية لتدريب وكي