ترغب بنشر مسار تعليمي؟ اضغط هنا

دفق مستوى تقييم الكمون للترجمة الآلية المتزامنة

Stream-level Latency Evaluation for Simultaneous Machine Translation

358   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

اكتسبت الترجمة الآلية المتزامنة الجر مؤخرا، بفضل تحسينات الجودة المهمة ومختام تطبيقات البث.تحتاج أنظمة الترجمة المتزامنة إلى إيجاد مفاضلة بين جودة الترجمة ووقت الاستجابة، وبالتالي تم اقتراح تدابير الكمون المتعددة.ومع ذلك، يتم تقدير تقييمات الكمون للترجمة الفورية على مستوى الجملة، ولا تأخذ في الاعتبار الطبيعة المتسلسلة لسيناريو البث.في الواقع، هذه تدابير الكمون على مستوى الجملة ليست مناسبة تماما للترجمة المستمرة، مما أدى إلى وجود أرقام غير متماسكة مع سياسة الترجمة المتزامنة للنظام التي يتم تقييمها.يقترح هذا العمل تكيف مستوى دفق من تدابير الكمون الحالية بناء على نهج إعادة تجزئة مطبق على ترجمة الناتج، والتي يتم تقييمها بنجاح على شروط البث لمهمة الإشارة IWSLT.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نقترح إطارا عاما للترجمة الآلية المتزامنة.تستخدم النهج التقليدية عددا ثابتا من الكلمات المصدر لترجمة أو تعلم السياسات الديناميكية لعدد الكلمات المصدر عن طريق التعلم التعزيز.نحن هنا صياغة ترجمة متزامنة كمشكلة تعلم التسلسل الهيكلية إلى التسلسل.يتم تقدي م متغير كامن إلى نموذج قراءة أو ترجمة الإجراءات في كل خطوة زمنية، ثم يتم دمجها بعد ذلك للنظر في جميع سياسات الترجمة الممكنة.يستخدم POISSON RE-PLISTIONSED قبل تنظيم السياسات التي تسمح للنموذج بتوازن بشكل صريح بجودة الترجمة والكمول.توضح التجارب فعالية وأغاني الإطار الإداري، والذي يحقق أفضل درجات بلو نظرا لمتوسط الألوان المتوسطة عن مصطلحات البيانات القياسية.
التقييم الخالي من المرجع لديه القدرة على جعل تقييم الترجمة الآلية أكثر قابلية للتطوير بشكل كبير، مما يتيح لنا المحور بسهولة لغات أو مجالات جديدة.لقد أظهر مؤخرا أن الاحتمالات التي قدمتها نموذج كبير متعدد اللغات يمكن أن تحقق حالة من النتائج الفنية عند استخدامها كتقسيط مجاني مرجعي.نقوم بتجربة تعديلات مختلفة لهذا النموذج، وإظهار ذلك من خلال تحجيمه، يمكننا مطابقة أداء بلو.نقوم بتحليل نقاط الضعف المحتملة المختلفة للنهج، وتجد أنه قوي بشكل مدهش ومن المرجح أن تقدم أداء معقول عبر مجموعة واسعة من المجالات وصفات النظام المختلفة.
في الآونة الأخيرة، تم اقتراح عدد من الأساليب لتحسين أداء الترجمة للترجمة الآلية العصبية على مستوى المستند (NMT). ومع ذلك، فإن القليل من التركيز على موضوع تناسق الترجمة المعجمية. في هذه الورقة، نطبق ترجمة واحدة لكل خطاب "في NMT، وتهدف إلى تشجيع تناسق الترجمة المعجمية ل NMT على مستوى المستند. تتم ثم نشجع ترجمة هذه الكلمات داخل رابط لتكون متسقة بطريقتين. من ناحية، عند ترميز الجمل داخل وثيقة نتخذها بشكل صحيح معلومات السياق من هذه الكلمات. من ناحية أخرى، نقترح وظيفة خسارة مساعدة إلى تقييد أفضل أن ترجمتهم يجب أن تكون متسقة. النتائج التجريبية على الصينية english والإنجليزية → توضح مهام الترجمة الفرنسية أن نهجنا لا يحقق فقط الأداء الحديث في درجات بلو، ولكن أيضا يحسن إلى حد كبير الاتساق المعجمي في الترجمة.
يتم تدريب معظم أنظمة الترجمة الآلية المتزامنة (SIMT) وتقييمها في Offline Translation Corpora.نحن نقول أن أنظمة SIMT يجب تدريبها واختبارها على بيانات التفسير الحقيقي.لتوضيح هذه الحجة، نقترح مجموعة اختبار التفسير وإجراء تقييم واقعي ل Simt المدربة على ا لترجمات دون اتصال.نتائجنا، في الاختبار المحدد لدينا مع 3 أزواج لغة صغيرة الحجم الحالية، تسليط الضوء على الفرق من النتيجة حتى 13.83 بلو عند تقييم نماذج Simt على بيانات الترجمة الشفوية للترجمة.في غياب بيانات التدريب على الترجمة الشفوية، نقترح طريقة نقل نمط الترجمة إلى الترجمة إلى الترجمة (T2I) التي تسمح بتحويل الترجمات غير المتصلة حاليا إلى بيانات نمط الترجمة الشفوية، مما يؤدي إلى تحسن ما يصل إلى 2.8 بلو.ومع ذلك، لا تزال فجوة التقييم ملحوظة، ودعا إلى بناء تفسير واسع النطاق مناسبة بشكل أفضل لتقييم وتطوير أنظمة SIMT.
الترجمة الآلية العصبية (NMT) حساسة لتحويل المجال. في هذه الورقة، نتعامل مع هذه المشكلة في إعداد تعليمي نشط حيث يمكننا أن نقضي ميزانية معينة في ترجمة البيانات داخل المجال، وتصفح تدريجيا نموذج NMT خارج المجال المدرب مسبقا على البيانات المترجمة حديثا. ع ادة ما تختار طرق التعلم النشطة الحالية ل NMT الجمل بناء على درجات عدم اليقين، ولكن هذه الأساليب تتطلب ترجمة مكلفة للجمل الكاملة حتى عندما تكون عبارات واحدة أو اثنين فقط في الجملة مفيدة. لمعالجة هذا القيد، نعيد فحص العمل السابق من حقبة الترجمة الآلية القائمة على العبارة (PBMT) التي حددت جمل كاملة، ولكن العبارات الفردية إلى حد ما. ومع ذلك، في حين أن دمج هذه العبارات في أنظمة PBMT كانت بسيطة نسبيا، إلا أنها أقل تافهة لأنظمة NMT، والتي يجب تدريبها على تسلسل كامل لالتقاط خصائص هيكلية أكبر للجمل الفريدة للمجال الجديد. للتغلب على هذه العقبات، نقترح تحديد كلا الجمل الكاملة والعبارات الفردية من البيانات غير المسبقة في المجال الجديد للتوجيه إلى المترجمين البشريين. في مهمة ترجمة باللغة الألمانية-الإنجليزية، تحقق نهج التعلم النشط لدينا تحسينات متسقة حول أساليب اختيار الجملة القائمة على عدم اليقين، وتحسين ما يصل إلى 1.2 نتيجة بلو على خطوط خطوط التعلم النشطة قوية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا