يتم وضع تقدير الجودة على مستوى الجملة (QE) من الترجمة الآلية بشكل تقليدي كملقمة الانحدار، ويتم قياس أداء نماذج QE عادة بواسطة ارتباط بيرسون مع ملصقات بشرية. حققت نماذج QE الأخيرة مستويات ارتباطا غير مرئي مسبقا بأحكام بشرية، لكنها تعتمد على نماذج لغوية محلية متعددة اللغات الكبيرة باهظة الثمن بشكل حسابي وجعلها غير ممكنة لتطبيقات العالم الحقيقي. في هذا العمل، نقوم بتقييم العديد من تقنيات ضغط النماذج ل QE والعثور على ذلك، على الرغم من شعبيتها في مهام NLP الأخرى، فإنها تؤدي إلى ضعف الأداء في وضع الانحدار هذا. نلاحظ أن هناك حاجة إلى معلمة نموذجية كاملة لتحقيق نتائج SOTA في مهمة الانحدار. ومع ذلك، فإننا نجادل بأن مستوى التعبير عن نموذج في مجموعة مستمرة غير ضرورية لإحضار تطبيقات المصب في QE، وإظهار أن إعادة صياغة QE كمشكلة تصنيف وتقييم نماذج QE باستخدام مقاييس التصنيف من شأنها أن تعكس أدائها الفعلي بشكل أفضل في الواقع تطبيقات العالم.
Sentence-level Quality estimation (QE) of machine translation is traditionally formulated as a regression task, and the performance of QE models is typically measured by Pearson correlation with human labels. Recent QE models have achieved previously-unseen levels of correlation with human judgments, but they rely on large multilingual contextualized language models that are computationally expensive and make them infeasible for real-world applications. In this work, we evaluate several model compression techniques for QE and find that, despite their popularity in other NLP tasks, they lead to poor performance in this regression setting. We observe that a full model parameterization is required to achieve SoTA results in a regression task. However, we argue that the level of expressiveness of a model in a continuous range is unnecessary given the downstream applications of QE, and show that reframing QE as a classification problem and evaluating QE models using classification metrics would better reflect their actual performance in real-world applications.
المراجع المستخدمة
https://aclanthology.org/
تُصنف الخدمات التي يطلبها المستخدمون عبر شبكة الانترنت إلى نوعين أساسيين، خدمات تعمل بالزمن الحقيقي مثل تطبيقات الفيديو و الصوت بالزمن الحقيقي و هي تستخدم بروتوكول (UDP (Unit Datagram Protocol، و خدمات أخرى تعمل بالزمن غير الحقيقي مثل تطبيقات تصفح ال
تتوفر أنظمة الإجابة على الأسئلة (QA) الآن من خلال العديد من التطبيقات التجارية لمجموعة واسعة من المجالات، مما يخدم ملايين المستخدمين الذين يتفاعلون معهم عبر واجهات الكلام.ومع ذلك، فإن المعايير الحالية في أبحاث ضمنيا لا تحسب الأخطاء التي قد تعرضها نما
تحسنت تقسيم الصور التلقائي بشكل كبير خلال السنوات القليلة الماضية، لكن المشكلة بعيدة عن حلها، حيث لا تزال حالة من النماذج الفنية غالبا ما تنتج توضيحات منخفضة الجودة عند استخدامها في البرية. في هذه الورقة، نركز على مهمة تقدير الجودة (QE) للحصول على تع
تهدف تقدير الجودة (QE) من الترجمة الآلية (MT) إلى تقييم جودة الجمل التي ترجمتها الجهاز دون مراجع وهي مهمة في التطبيقات العملية ل MT.تتطلب Training Models QE بيانات موازية ضخمة بأشرفة توضيحية ذات جودة يدوية، وهي تستغرق وقتا طويلا ومكثفة العمالة للحصول
نحن نحقق في تعلم اللغة الأساسية من خلال بيانات عالمية حقيقية، من خلال نمذجة ديناميات متعلم المعلم من خلال التفاعلات الطبيعية التي تحدث بين المستخدمين ومحركات البحث؛على وجه الخصوص، نستكشف ظهور التعميم الدلالي من تمثيلات كثيفة غير مخالفة خارج البيئات ا