ترغب بنشر مسار تعليمي؟ اضغط هنا

SD-QA: تحدث سؤالي من اللهاج المنطوق عن العالم الحقيقي

SD-QA: Spoken Dialectal Question Answering for the Real World

417   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تتوفر أنظمة الإجابة على الأسئلة (QA) الآن من خلال العديد من التطبيقات التجارية لمجموعة واسعة من المجالات، مما يخدم ملايين المستخدمين الذين يتفاعلون معهم عبر واجهات الكلام.ومع ذلك، فإن المعايير الحالية في أبحاث ضمنيا لا تحسب الأخطاء التي قد تعرضها نماذج التعرف على الكلام، ولا تفكر في اختلافات اللغة (لهجات) للمستخدمين.لمعالجة هذه الفجوة، نزيد من مجموعة بيانات QA الحالية لبناء معيارا متعدد الهياكل المتعددة، معيار QA المنطوقة في خمس لغات (العربية، البنغالية، الإنجليزية، الكورية، الكورية) مع أكثر من 68K Audio مطالبات في 24 لهجة من 255 متحدثا.نحن نقدم نتائج خط الأساس عرض الأداء العالمي الحقيقي لأنظمة ضمان الجودة وتحليل تأثير مجموعة متنوعة اللغات وغيرها من سمات المتكلم الحساسة على أداء المصب.أخيرا، ندرس عدالة نماذج ASR و QA فيما يتعلق بسكان المستخدمين الأساسيين.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تفترض السؤال المتعدد اللغات الرد على المهام عادة أن الإجابات موجودة بنفس اللغة مثل السؤال. ومع ذلك، في الممارسة العملية، تواجه العديد من اللغات كل من ندرة المعلومات --- حيث تحتوي اللغات على عدد قليل من المقالات المرجعية --- واستاجةم المعلومات --- أين الأسئلة المرجعية المفاهيم من الثقافات الأخرى. يمتد هذا العمل سؤالا مفتوحا للاسترجاع الرد على الإعداد المتبادل الذي تمكن الأسئلة من لغة واحدة للإجابة على محتوى الإجابة من لغة أخرى. نحن نبني مجموعة بيانات واسعة النطاق تم بناؤها على أسئلة 40K تسعى للحصول على معلومات عبر 7 لغات غير الإنجليزية متنوعة لا يمكن أن تجد Tydi QA إجابات لغة نفسها. استنادا إلى هذه البيانات، نقدم إطار عمل، يسمى سؤالا عبر اللغات المفتوح استرجاع الإجابة (XOR QA)، الذي يتكون من ثلاث مهام جديدة تنطوي على استرجاع وثائق عبر اللغات من موارد متعددة اللغات والإنجليزية. نقوم بإنشاء خطوط الأساس مع أنظمة ترجمة من الآلة الحديثة ونماذج مسببة الاحتياطية عبر اللغات. تشير النتائج التجريبية إلى أن XOR QA هي مهمة صعبة سيسهل تطوير تقنيات جديدة للإجابة على الأسئلة متعددة اللغات. تتوفر بياناتنا ورمزنا في https://nlp.cs.washington.edu/xorqa/.
توليد أزواج الإجابة ذات الجودة العالية هي مهمة صلبة ولكنها ذات مغزى. على الرغم من أن الأعمال السابقة قد حققت نتائج رائعة حول توليد الأسئلة على دراية بالإجابة، فمن الصعب تطبيقها في تطبيق عملي في مجال التعليم. تتناول هذه الورقة لأول مرة مهمة توليد زوج الإجابة السؤال في بيانات الفحص العالمي الحقيقي، وتقترح إطارا جديدا جديدا في العرق. لالتقاط المعلومات المهمة لمقطع الإدخال، نقوم أولا بإنشاء أجهزة iTPhragrases (بدلا من استخراج)، وبالتالي يتم تقليل هذه المهمة إلى توليد مشترك مسدد السؤال عن السؤال المجاني. تبعا لذلك، نقترح نموذج اتصالات متعددة الوكيل لتوليد واستفسار الأسئلة والمجاسات القصيرة بشكل متكرر، ثم قم بتطبيق السؤال والمجاسيات المتولدة لتوجيه جيل الإجابات. لإنشاء معيار قوي، نبني نموذجنا على نموذج ما قبل التدريب الجيل القوي. تظهر النتائج التجريبية أن نموذجنا يجعل اختراقات كبيرة في مهمة جيل الإجابة عن السؤال. علاوة على ذلك، فإننا نصنع تحليلا شاملا على طرازنا، مما يشير إلى اتجاهات جديدة لهذه المهمة الصعبة.
يتم وضع تقدير الجودة على مستوى الجملة (QE) من الترجمة الآلية بشكل تقليدي كملقمة الانحدار، ويتم قياس أداء نماذج QE عادة بواسطة ارتباط بيرسون مع ملصقات بشرية. حققت نماذج QE الأخيرة مستويات ارتباطا غير مرئي مسبقا بأحكام بشرية، لكنها تعتمد على نماذج لغوي ة محلية متعددة اللغات الكبيرة باهظة الثمن بشكل حسابي وجعلها غير ممكنة لتطبيقات العالم الحقيقي. في هذا العمل، نقوم بتقييم العديد من تقنيات ضغط النماذج ل QE والعثور على ذلك، على الرغم من شعبيتها في مهام NLP الأخرى، فإنها تؤدي إلى ضعف الأداء في وضع الانحدار هذا. نلاحظ أن هناك حاجة إلى معلمة نموذجية كاملة لتحقيق نتائج SOTA في مهمة الانحدار. ومع ذلك، فإننا نجادل بأن مستوى التعبير عن نموذج في مجموعة مستمرة غير ضرورية لإحضار تطبيقات المصب في QE، وإظهار أن إعادة صياغة QE كمشكلة تصنيف وتقييم نماذج QE باستخدام مقاييس التصنيف من شأنها أن تعكس أدائها الفعلي بشكل أفضل في الواقع تطبيقات العالم.
تعرض مشكلة الإجابة على الأسئلة التي تستخدم المعرفة من طرازات اللغة المدربة مسبقا (LMS) ورسم الرسوم البيانية المعرفة (KGS) تحديين: بالنظر إلى سياق ضمان الجودة (اختيار الأسئلة والأجوبة)، فإن الأساليب تحتاج إلى (I) تحديد المعرفة ذات الصلة من KGS الكبيرة ،و (2) أداء التفكير المشترك في سياق ضمان الجودة و KG.هنا نقترح نموذجا جديدا، QA-GNN، الذي يتناول التحديات المذكورة أعلاه من خلال ابتكارات رئيسيتين: (ط) تسجيل الملاءمة، حيث نستخدم LMS لتقدير أهمية عقد KG بالنسبة إلى سياق ضمان الجودة المحدد، و (2) مشتركالتفكير، حيث نتواصل مع سياق ضمان الجودة و KG لتشكيل رسم بياني مشترك، وتحديث خصائصها المتبادلة من خلال رسالة الرسوم البيانية القائمة على الرسم البياني.نقوم بتقييم QA-GNN على مجموعات بيانات Commonsenseenseqa و OpenBookqa، وإظهار تحسنها على نماذج LM و LM + KG الحالية، وكذلك قدرتها على أداء التفكير القابل للتفسير والمنظم، على سبيل المثال، المناولة الصحيحة في الأسئلة.
يمكن جمع كميات كبيرة من سجلات التفاعل من أنظمة NLP التي يتم نشرها في العالم الحقيقي.كيف يمكن الاستفادة من هذه الثروة من المعلومات؟يعد استخدام سجلات التفاعل هذه في إعداد تعليم التعزيز (RL) غير متصل نهجا واعدا.ومع ذلك، نظرا لطبيعة مهام NLP وقيود أنظمة الإنتاج، تنشأ سلسلة من التحديات.نقدم نظرة عامة موجزة عن هذه التحديات ومناقشة الحلول الممكنة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا