ترغب بنشر مسار تعليمي؟ اضغط هنا

أمثلة مقترنة على أنها إشراف غير مباشر في نماذج القرارات الكامنة

Paired Examples as Indirect Supervision in Latent Decision Models

245   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

النماذج التركيبية المنظمة جذابة لأنها تتحلل صراحة المشاكل وتوفير مخرجات متوسطة تفسير تفسر الثقة في أن النموذج ليس مجرد إزالته على القطع الأثرية للبيانات. ومع ذلك، فإن تعلم هذه النماذج صعبة، ومع ذلك، نظرا لأن الإشراف على المهمة النهائية يوفر فقط إشارة غير مباشرة ضعيفة حول القيم التي يجب أن تتخذ القرارات الكامنة. غالبا ما يؤدي ذلك إلى فشل النموذج في تعلم كيفية تنفيذ المهام الوسيطة بشكل صحيح. في هذا العمل، نقدم طريقة للاستفادة من الأمثلة المقترنة التي توفر إشارات أقوى لتعلم القرارات الكامنة. عندما تتخلى أمثلة تدريبية ذات صلة بالحرارة الداخلية، نضيف هدف تدريب إضافي لتشجيع الاتساق بين قراراتهم الكامنة. لا يتطلب مثل هذا الهدف إشراف خارجي لقيم الإخراج الكامن، أو حتى المهمة النهائية، حتى الآن يوفر إشارة تدريب إضافية إلى ذلك من خلال أمثلة تدريب فردية أنفسهم. نحن نطبق طريقتنا لتحسين سؤال التركيبي الرد باستخدام شبكات الوحدات النمطية العصبية على Dropet DataSet. نستكشف ثلاث طرق للحصول على أسئلة مقترنة في قطرة: (أ) اكتشاف أمثلة مقترنة بشكل طبيعي داخل DataSet، (ب) بناء أمثلة مقترنة باستخدام القوالب، و (ج) إنشاء أمثلة مقنعة باستخدام نموذج جيل سؤال. إننا نوضح تجريبيا أن نهجنا المقترح يحسن التعميم داخل التوزيع ويؤدي إلى تصحيح تنبؤات القرارات الكامنة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

لأكثر من ثلاثين عاما، قام الباحثون بتطوير وتحليل طرق لتحريض الأشجار الكامنة كهدوث لنهج التحليل النحوي غير المقترح. ومع ذلك، لا تزال الأنظمة الحديثة لا تؤدي بشكل جيد بما فيه الكفاية مقارنة بنظيراتهم الخاضعة للإشراف للحصول على أي استخدام عملي باسم التع ليق الهيكلية للنص. في هذا العمل، نقدم تقنية تستخدم إشراف بعيد في شكل قيود سبعة (أي عبارة قوية) لتحسين الأداء في تحليل الدوائر الانتخابية غير المزدوجة. باستخدام عدد قليل نسبيا من قيود الأمان، يمكننا تحسين الإخراج بشكل كبير من Diora، وهو نظام تحليل غير مناسب بالفعل منافسة. بالمقارنة مع التعليق التوضيحي في شجرة التحليل الكامل، يمكن الحصول على قيود Span مع الحد الأدنى من الجهد، كما هو الحال مع معجم مشتق من ويكيبيديا، للعثور على مباريات نصية دقيقة. تجاربنا تظهر قيود الأمان على أساس الكيانات على تحسين تحليل الدوائر الانتخابية على بنك WSJ Penn TreeBank الإنجليزية بأكثر من 5 F1. علاوة على ذلك، تمتد طريقنا إلى أي مجال يتم فيه تحقيق قيود سبعة بسهولة، وكدراسة حالة نوضح فعاليتها من خلال تحليل النص الطبي الطبيعي من مجموعة بيانات الحرفية.
لتدقيق متانة نماذج التعرف على الكيان المسماة (NER)، نقترح روكر، وسيلة بسيطة ولكنها فعالة لإنشاء أمثلة خصومة طبيعية. على وجه التحديد، على مستوى الكيان، نحل محل الكيانات المستهدفة مع كيانات أخرى من نفس الطبقة الدلالية في ويكيداتا؛ على مستوى السياق، نست خدم نماذج اللغة المدربة مسبقا (E.G.، Bert) لتوليد بدائل النصية. معا، تنتج مستويين AT- TACH أمثلة مخدرة طبيعية تؤدي إلى توزيع تحول من البيانات التدريبية التي تم تدريب نماذجنا المستهدفة عليها. نحن نطبق الطريقة المقترحة على مجموعة بيانات Ontonotes وإنشاء معيار جديد يدعى OnTorock لتقييم متانة النماذج NER الحالية عبر بروتوكول تقييم منهجي. تجاربنا وتحليلنا تكشف أنه حتى أفضل نموذج له انخفاض كبير في الأداء، ويبدو أن هذه النماذج تحفز أنماط كيان داخل المجال بدلا من التفكير من السياق. يدرس عملنا أيضا آثار عدد قليل من أساليب تكبير البيانات البسيطة لتحسين متانة نماذج NER.
يتم استخدام AutoNCoders Varitional (VAES) على نطاق واسع للنمذجة المتغيرة الكامنة للنص.نركز على الاختلافات التي تتعلم توزيعات مسبقة معبرة على المتغير الكامن.نجد أن استراتيجيات التدريب الحالية ليست فعالة لتعلم البثور الغابات، لذلك نقترح أن نقترح إضافة احتمال هامشي لسجل الأهمية كشرطة ثانية إلى هدف VAE القياسي للمساعدة عند تعلم المقيم السابق.يؤدي القيام بذلك إلى تحسين النتائج لجميع البثور التي قامت بتقييمها، بما في ذلك اختيار جديد للجملة VAES بناء على تطبيع التدفقات (NF).لم تعد Priors المعلمة مع NF مقيدة لعائلة توزيع محددة، مما يتيح طريقة أكثر مرونة لترميز توزيع البيانات.يظهر نموذجنا، الذي نسميه FOLPRIOR، تحسنا كبيرا في مهام نمذجة اللغة مقارنة مع خطوط الأساس القوية.نحن نوضح أن flowprior يتعلم التعبير قبل التحليل والعديد من أشكال التقييم التي تنطوي على جيل.
تستخدم وظائف الاستحواذ المشتركة للتعلم النشط إما أخذ عينات من عدم اليقين أو التنوع، تهدف إلى تحديد نقاط بيانات صعبة ومتنوعة من مجموعة البيانات غير المسبقة، على التوالي. في هذا العمل، استمتع بأفضل ما في العالمين، نقترح وظيفة الاستحواذ المفتوحة لاختار الأمثلة المتعاقبة تماما، أي نقاط بيانات مشابهة في مساحة ميزة النموذج وحتى الآن مخرجات النموذج احتمالية تنبؤية مختلفة. قارنا نهجنا، CAL (التعلم النشط الصنع)، مع مجموعة متنوعة من وظائف الاستحواذ في أربعة مهام فهم اللغة الطبيعية وسبع مجموعات البيانات. تظهر تجاربنا أن CUR يؤدي Cal بشكل أفضل أو متساو من أفضل خط الأساس الأدائي عبر جميع المهام، على كل من البيانات داخل المجال والخروج. نقوم أيضا بإجراء دراسة واسعة النمذجة لطرأتنا، ونحن نتحلل جميع مجموعات البيانات المكتسبة بنشاط والتي توضح أن كال يحصل على مفاضلة أفضل بين عدم اليقين والتنوع مقارنة باستراتيجيات أخرى.
توليد القصة هي مهمة مفتوحة وعشرية، مما يشكل تحديا لتقييم نماذج جيل القصة.نقدم اختبار المغامرة الخاصة بك، إعداد الكتابة التعاوني لتقييم نموذج الزوجي.تولد طرازان اقتراحات للناس لأنهم يكتبون قصة قصيرة؛نطلب من الكتاب اختيار أحد الاقتراحين، ونحن نلاحظ اقت راحات النموذج التي يفضلونها.كما يتيح الإعداد أيضا إجراء مزيد من التحليل بناء على المراجعات التي يقوم بها الناس إلى الاقتراحات.نظظ أن هذه التدابير، إلى جانب المقاييس التلقائية، توفر صورة إعلامية لأداء النماذج، سواء في الحالات التي تكون فيها الاختلافات في طرق التوليد صغيرة (عينة من أعلى النواة مقابل Top-K) وكبير (نماذج Fusion Fusion)وبعد

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا