تستخدم وظائف الاستحواذ المشتركة للتعلم النشط إما أخذ عينات من عدم اليقين أو التنوع، تهدف إلى تحديد نقاط بيانات صعبة ومتنوعة من مجموعة البيانات غير المسبقة، على التوالي. في هذا العمل، استمتع بأفضل ما في العالمين، نقترح وظيفة الاستحواذ المفتوحة لاختار الأمثلة المتعاقبة تماما، أي نقاط بيانات مشابهة في مساحة ميزة النموذج وحتى الآن مخرجات النموذج احتمالية تنبؤية مختلفة. قارنا نهجنا، CAL (التعلم النشط الصنع)، مع مجموعة متنوعة من وظائف الاستحواذ في أربعة مهام فهم اللغة الطبيعية وسبع مجموعات البيانات. تظهر تجاربنا أن CUR يؤدي Cal بشكل أفضل أو متساو من أفضل خط الأساس الأدائي عبر جميع المهام، على كل من البيانات داخل المجال والخروج. نقوم أيضا بإجراء دراسة واسعة النمذجة لطرأتنا، ونحن نتحلل جميع مجموعات البيانات المكتسبة بنشاط والتي توضح أن كال يحصل على مفاضلة أفضل بين عدم اليقين والتنوع مقارنة باستراتيجيات أخرى.
Common acquisition functions for active learning use either uncertainty or diversity sampling, aiming to select difficult and diverse data points from the pool of unlabeled data, respectively. In this work, leveraging the best of both worlds, we propose an acquisition function that opts for selecting contrastive examples, i.e. data points that are similar in the model feature space and yet the model outputs maximally different predictive likelihoods. We compare our approach, CAL (Contrastive Active Learning), with a diverse set of acquisition functions in four natural language understanding tasks and seven datasets. Our experiments show that CAL performs consistently better or equal than the best performing baseline across all tasks, on both in-domain and out-of-domain data. We also conduct an extensive ablation study of our method and we further analyze all actively acquired datasets showing that CAL achieves a better trade-off between uncertainty and diversity compared to other strategies.
المراجع المستخدمة
https://aclanthology.org/
الحجج عالية الجودة هي جزء أساسي من صنع القرار.توقع جودة الوسيطة تلقائيا هي مهمة معقدة حصلت مؤخرا على الكثير من الاهتمام في تعدين الحجة.ومع ذلك، فإن جهود التوضيحية لهذه المهمة مرتفعة بشكل استثنائي.لذلك، نختبر أساليب التعلم النشطة القائمة على عدم اليقي
حققت النماذج التراجعية التلقائية واسعة النطاق نجاحا كبيرا في توليد استجابة الحوار، بمساعدة طبقات المحولات. ومع ذلك، فإن هذه النماذج لا تتعلم مساحة كامنة تمثيلية لتوزيع الجملة، مما يجعل من الصعب التحكم في الجيل. لقد حاولت الأعمال الحديثة على تعلم تمثي
تهدف محاذاة الكيان (EA) إلى مطابقة الكيانات المكافئة عبر الرسوم البيانية المعرفة المختلفة (KGS) وهي خطوة أساسية من KG Fusion. الأساليب الرئيسية الحالية - نماذج عصام العصبية - تعتمد على التدريب مع محاذاة البذور، أي مجموعة من أزواج كيان ما قبل الانحياز
الترجمة الآلية العصبية (NMT) حساسة لتحويل المجال. في هذه الورقة، نتعامل مع هذه المشكلة في إعداد تعليمي نشط حيث يمكننا أن نقضي ميزانية معينة في ترجمة البيانات داخل المجال، وتصفح تدريجيا نموذج NMT خارج المجال المدرب مسبقا على البيانات المترجمة حديثا. ع
في حين أن الأداء التنبئي لمحطات التبعية الإحصائية الحديثة يعتمد بشدة على توافر بيانات Treebank المشروح باهظة الثمن، إلا أن جميع التعليقات التعليقات التوضيحية تسهم على قدم المساواة في تدريب المحللين.في هذه الورقة، نحاول تقليل عدد الأمثلة المسماة اللاز