ترغب بنشر مسار تعليمي؟ اضغط هنا

محاذاة ثنائية اللغة ما قبل التدريب من أجل نقل الصفر القصير عبر اللغات

Bilingual Alignment Pre-Training for Zero-Shot Cross-Lingual Transfer

352   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

حققت نماذج متعددة اللغات المدربة مسبقا أداء ملحوظا على تعلم التحويل عبر اللغات.تم تدريب بعض النماذج متعددة اللغات مثل Mbert، مدربة مسبقا على Corpora غير المسبق، وبالتالي لا يمكن تضمين تضمينات لغات مختلفة في النماذج بشكل جيد للغاية.في هذه الورقة، نهدف إلى تحسين أداء نقل اللغات المتبادل الصفر عن طريق اقتراح مهمة تدريبية مسبقا تسمى نموذج محاذاة Word-Exchange (Weal)، والذي يستخدم معلومات المحاذاة الإحصائية كمعرفة مسبقة لتوجيه الكلمة عبر اللغاتتنبؤ.نحن نقيم نموذجنا في مهمة مهام الفهم لقراءة الجهاز متعدد اللغات ومهمة واجهة اللغة الطبيعية XNLI.تظهر النتائج أن Weam يمكن أن يحسن بشكل كبير من الأداء الصفر بالرصاص.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تقوم هذه الدراسات الورقية بالتحويل عبر اللغات الصفرية إلى نماذج لغة الرؤية. على وجه التحديد، نركز على البحث عن نص متعدد اللغات والفيديو واقتراح نموذجا يستند إلى المحولات التي تتعلم أن تضمينات السياق متعددة اللغات متعددة اللغات. تحت إعداد طلقة صفرية، نوضح تجريبيا أن الأداء يتحلل بشكل كبير عند الاستعلام عن نموذج الفيديو النصي متعدد اللغات مع جمل غير إنجليزية. لمعالجة هذه المشكلة، نقدم استراتيجية متعددة الاستخدامات متعددة الاستخدامات متعددة اللغات، وجمع مجموعة بيانات تعليمية متعددة اللغات متعددة اللغات (متعدد HOWTO100M) للتدريب المسبق. تشير التجارب في VTT إلى أن طريقتنا تعمل بشكل كبير على تحسين البحث عن الفيديو في اللغات غير الإنجليزية دون شروح إضافية. علاوة على ذلك، عند توفر التعليقات التوضيحية متعددة اللغات، تتفوقت طريقة لدينا على خطوط الأساس الحديثة بواسطة هامش كبير في البحث عن نص متعدد اللغات للفيديو على VTT و Vatex؛ وكذلك في البحث النص متعدد اللغات إلى الصورة على multi30k. يتوفر نموذجنا ومتعدد HOWTO100M على http://github.com/berniebear/multi-ht100m.
حققت نماذج التضمين السياقية المدربة مسبقا متعددة اللغات (Devlin et al.، 2019) أداء مثير للإعجاب على مهام نقل اللغات الصفرية.من خلال إيجاد استراتيجية ضبط الدقيقة الأكثر فعالية لضبط هذه النماذج على لغات الموارد عالية الموارد بحيث تقوم بتحويلاتها جيدا ل غات اللغات الصفرية هي مهمة غير تافهة.في هذه الورقة، نقترح رواية ميتا المحسن إلى طبقات ناعمة في طبقات النموذج المدرب مسبقا لتجميدها أثناء الضبط.نحن ندرب ميتا المحسن عن طريق محاكاة سيناريو نقل الصفر بالرصاص.تشير النتائج على الاستدلال اللغوي المتبادل اللغوي إلى أن نهجنا يحسن على خط الأساس البسيط للضبط و X-Maml (Nooralahzadeh et al.، 2020).
يهدف سؤال متعدد اللغات، الرد على الرسم البياني للمعرفة (KGQA) إلى استخلاص إجابات من الرسم البياني المعرفي (KG) للأسئلة بلغات متعددة. لتكون قابلة للتطبيق على نطاق واسع، نركز على إعداد نقل الطلقة الصفرية. هذا هو، يمكننا فقط الوصول إلى البيانات التدريبي ة فقط بلغة موارد عالية، بينما تحتاج إلى الإجابة على أسئلة متعددة اللغات دون أي بيانات معدنية باللغات المستهدفة. يتم تشغيل نهج مباشر إلى نماذج متعددة اللغات المدربة مسبقا (على سبيل المثال، MBERT) للنقل عبر اللغات، ولكن هناك فجوة كبيرة من الأداء KGQA بين المصدر واللغات المستهدفة. في هذه الورقة، نستمسى تحريض معجم ثنائي اللغة دون مقابل (BLI) لخريطة الأسئلة التدريبية في لغة المصدر في تلك الموجودة في اللغة المستهدفة مثل بيانات التدريب المعزز، والتي تتحل إلى عدم تناسق اللغة بين التدريب والاستدلال. علاوة على ذلك، نقترح استراتيجية تعليمية عدائية لتخفيف اضطراب بناء الجملة في البيانات المعززة، مما يجعل النموذج يميل إلى كل من اللغة والبنيات الاستقلال. وبالتالي، فإن نموذجنا يضيق الفجوة في تحويل صفرية عبر اللغات. التجارب على مجموعة بيانات KGQA متعددة اللغات مع 11 لغة موارد صفرية تحقق من فعاليتها.
تشفير لغة متعددة اللغات المدربة مسبقا، مثل Bert متعدد اللغات و XLM-R، إظهار إمكانات كبيرة للتحويل الصفر - عبر اللغات. ومع ذلك، فإن هذه اللوائح متعددة اللغات لا تحيي بالتحديد الكلمات والعبارات عبر اللغات. على وجه الخصوص، يتطلب محاذاة التعلم في مساحة ا لتضمين متعددة اللغات عادة على مستوى الجملة أو المستوى الموازي على مستوى Word، وهي مكلفة يتم الحصول عليها لغات الموارد المنخفضة. بديل هو جعل التشفير متعددة اللغات أكثر قوة؛ عند ضبط التشفير باستخدام المهمة المصدرة للمهمة، نربط التشفير لتتسامح مع الضوضاء في المساحات التضمين السياقية بحيث لا تتماشى تمثيلات اللغات المختلفة بشكل جيد، لا يزال بإمكان النموذج تحقيق أداء جيد على الصفر بالرصاص عبر اللغات نقل. في هذا العمل، نقترح استراتيجية تعليمية لتدريب النماذج القوية عن طريق رسم الروابط بين الأمثلة الخصومة وحالات فشل النقل الصفرية عبر اللغات. نعتمد اثنين من أساليب التدريب القوية المستخدمة على نطاق واسع، والتدريب الخصوم والتنعيم العشوائي، لتدريب النموذج القوي المرغوب فيه. توضح النتائج التجريبية أن التدريب القوي يحسن نقل صفرية عبر اللغات على مهام تصنيف النص. التحسن هو أكثر أهمية في إعداد النقل المتبادل المعمم، حيث ينتمي زوج جمل المدخلات إلى لغتين مختلفة.
نقدم VideoClip، وهو نهج مقاوم للتناقض في تدريب نموذج موحد مسبقا لفهم الفيديو والنصية الصفرية، دون استخدام أي ملصقات على مهام المصب.يقوم VideoClep بتدريب محول الفيديو والنص عن طريق تناقض أزواج فيديو إيجابية مؤقتة متداخلة مع السلبيات الصعبة من أقرب است رجاع جار.تجاربنا على سلسلة متنوعة من المهام المصب، بما في ذلك استرجاع الفيديو على مستوى التسلسل، والتعريب الخاص بمستوى عمل Videoqa ومستوى الرمز المميز، وتجزئة العمل تكشف عن أداء حالة من بين الفن، وتجاوز العمل السابق، وفي بعض الحالات يفوقنالنهج الخاضعة للإشراف.يتوفر الكود في https://github.com/pytorch/fairseq/examples/mmpt.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا