ترغب بنشر مسار تعليمي؟ اضغط هنا

لطيفة: الصورة العصبية التعليق مع التعاطف

NICE: Neural Image Commenting with Empathy

219   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

العاطفة والتعاطف هي أمثلة على الصفات البشرية التي تفتقر إلى العديد من التفاعلات البشرية. الهدف من عملنا هو توليد حوار جذاب في صورة مشتركة من المستخدمين مع زيادة العاطفة والتعاطف مع تقليل النواتج غير اللائق أو الهجومية الاجتماعية. ونحن نفرج عن الصورة العصبية التعليق مع مجموعة بيانات التعاطف (لطيفة) تتكون من ما يقرب من مليوني صورة وتعليقات مقابلة للإنسان، ومجموعة من التعليقات الشروحية البشرية والأداء الأساسي في مجموعة من النماذج. في الموقف عن الاعتماد على المشاعر المسمى يدويا، نستخدم أيضا تمثيل اللغوي الذي تم إنشاؤه تلقائيا كمصدر للملصقات الخاضعة للإشراف. بناء على هذه التعليقات التوضيحية، نحدد مهامين مختلفة لمجموعة البيانات الجميلة. بعد ذلك، نقترح نموذجا روايا قبل التدريب - النمذجة تؤثر على جيل للحصول على تعليقات الصورة (السحر) - والتي تهدف إلى توليد تعليقات للصور، مشروطة على التمثيل اللغوي الذي التقاط النمط والتأثير، والمساعدة في توليد أكثر تعاطفا وعاطفيا وجذابا و تعليقات اجتماعية مناسبة. باستخدام هذا النموذج، نحقق الأداء الحديث في واحدة من مهامنا الجميلة. تظهر التجارب أن النهج يمكن أن يولد المزيد من التعليقات التي تشبه الإنسان وإشراكها للإشراك.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في هذه الورقة، نقدم العمل في التقدم الذي يهدف إلى تطوير مجموعة بيانات جديدة للصورة مع كائنات مشروح. تتكون Corpus Image متعددة اللغات من طبولوجيا الكائنات المرئية (بناء على WordNet) ومجموعة من الصور ذات الصلة بشكل موضوعي المشروح مع أقنعة تجزئة وفئات ا لكائنات. حددنا 277 فصولا مهيمنة و 1،037 فصالا من الوالدين والسماء، وتجميعها إلى 10 مجالات مواضيعية مثل الرياضة والطب والتعليم والغذاء والأمن، وما إلى ذلك بالنسبة للفصول المختارة يتم إجراء بحث على شبكة الإنترنت واسعة النطاق من أجل ترجمة مجموعة كبيرة من الصور ذات حقوق الطبع والنشر عالية الجودة. إن تركيز الورق هو بروتوكول التوضيح الذي أنشأناه لتسهيل عملية التوضيحية: ontology للأشياء المرئية والاتفاقيات للاطلاع على الصورة وتجزئة الكائنات. تم تصميم DataSet لكل من تصنيف الصور والكشف عن الكائن والتجزئة الدلالي. بالإضافة إلى ذلك، سيتم تزويد التعليقات التوضيحية للكائن بأوصاف متعددة اللغات باستخدام Wordnets المتاحة بحرية.
التعاطف هو الرابط بين الذات والآخرين.اكتشاف وفهم التعاطف هو عنصر أساسي لتحسين التفاعل بين الإنسان.ومع ذلك، فإن التعليق البيانات للكشف عن التعاطف على نطاق واسع هو مهمة صعبة.توظف هذه الورقة تدريبات متعددة المهام مع تقطير المعرفة لدمج المعرفة من الموارد المتاحة (العاطفة والشعور) للكشف عن التعاطف عن اللغة الطبيعية في مجالات مختلفة.يؤدي هذا النهج إلى تحقيق نتائج أفضل على مجموعة بيانات التعاطف ذات الصلة بالأخبار مقارنة مع خطوط الأساس القوية.بالإضافة إلى ذلك، نبني مجموعة بيانات جديدة للتنبؤ بالتعاطف مع اتجاه التعاطف المحبوب الجميل، أو البحث عن أو توفير التعاطف، من تويتر.نطلق سراح DataSet لدينا لأغراض البحث.
حققت خوارزمية التعلم العميق مؤخرًا الكثير من النجاح خاصة في مجال رؤية الكمبيوتر.يهدف البحث الحالي إلى وصف طريقة التصنيف المطبقة على مجموعة البيانات الخاصة بأنواع متعددة من الصور (صور الرادار ذي الفجوة المركبةSAR والصور ليست SAR) ، أستخدم نقل التعلم م تبوعًا بأساليب الضبط الدقيق في مخطط التصنيف هذا . تم استخدام بنيات مدربة مسبقًا على قاعدة بيانات الصور المعروفهImageNet، تم استخدام نموذج VGG 16 بالفعل كمستخرج ميزات وتم تدريب مصنف جديد بناءً على الميزات المستخرجة .تركز بيانات الإدخال بشكل أساسي على مجموعة البيانات التي تتكون من خمس فئات فئة صور الرادارSAR (المنازل) وفئات الصور ليستSAR (القطط والكلاب والخيول والبشر). تم اختيار الشبكة العصبية التلافيفية (CNN) كخيار أفضل لـعملية التدريب لانها نتجت عن دقة عالية. لقد وصلنا إلى الدقة النهائية بنسبة 91.18٪ في خمس فئات مختلفة. تتم مناقشة النتائج من حيث احتمالية الدقة لكل فئة في تصنيف الصورة بالنسبة المئوية. تحصل فئة القطط على 99.6٪ ، بينما تحصل فئة المنازل على 100٪ وتحصل انواع آخرى من الفئات بمتوسط درجات 90٪ وما فوق.
تقدم الورقة تجارب في الترجمة الآلية العصبية مع القيود المعجمية في لغة غنية مورمية.على وجه الخصوص، نقدم طريقة واستنادا إلى فك التشفير المقيد والتي تتعامل مع الأشكال المصدرة للإدخالات المعجمية ولا تتطلب أي تعديل بيانات التدريب أو الهندسة المعمارية النم وذجية.لتقييم فعاليتها ونقوم بإجراء تجارب في سيناريوهات مختلفة: عام ومخصص خاص.قارنا طريقنا مع ترجمة خط الأساس، وهي ترجمة بدون قيود معجمية ومن حيث سرعة الترجمة وجودة الترجمة.لتقييم مدى جودة معالجة القيود ونقترح مقاييس تقييم جديدة تأخذ في الاعتبار وجود وتنسيب وازدواجية وصحة الانهيار المصطلحات المعجمية في جملة الإخراج.
أظهرت نماذج الشبكة العصبية المستندة إلى ما يحقظ أن عروض حديثة (SOTA) على مهام معالجة اللغة الطبيعية (NLP). تعد تمثيل الجملة الأكثر استخداما لأساليب NLP ذات الاستخدام العصبي سلسلة من الكلمات الفرعية المختلفة عن تمثيل الجملة من الأساليب غير العصبية الت ي يتم إنشاؤها باستخدام تقنيات NLP الأساسية، مثل العلامات على جزء من الكلام (POS)، اسمه الكيان (NE) الاعتراف، والتحليل. تتلقى معظم نماذج NLP ذات القائمة العصبية فقط ناقلات ترميزها من سلسلة من الكلمات الفرعية التي تم الحصول عليها من نص الإدخال. ومع ذلك، لا يمكن الحصول على معلومات NLP الأساسية، مثل علامات نقاط البيع، ونتائج NES، وتحليل النتائج، إلخ، بشكل صريح من النص الكبير غير المستخديم المستخدمة في النماذج المستندة إلى ما يحقظ. تستكشف هذه الورقة استخدام NES على مهمتين يابانيين؛ تصنيف المستندات والجيل الرئيسي باستخدام النماذج القائمة على المحولات، للكشف عن فعالية معلومات NLP الأساسية. تظهر النتائج التجريبية مع ثمانية NES أساسية وحوالي 200 نسمة موسعة أن NES يحسن الدقة على الرغم من استخدام نموذج كبير يستند إلى الاحتمالات المدربة باستخدام بيانات نصية 70 جيجابايت.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا