التعاطف هو الرابط بين الذات والآخرين.اكتشاف وفهم التعاطف هو عنصر أساسي لتحسين التفاعل بين الإنسان.ومع ذلك، فإن التعليق البيانات للكشف عن التعاطف على نطاق واسع هو مهمة صعبة.توظف هذه الورقة تدريبات متعددة المهام مع تقطير المعرفة لدمج المعرفة من الموارد المتاحة (العاطفة والشعور) للكشف عن التعاطف عن اللغة الطبيعية في مجالات مختلفة.يؤدي هذا النهج إلى تحقيق نتائج أفضل على مجموعة بيانات التعاطف ذات الصلة بالأخبار مقارنة مع خطوط الأساس القوية.بالإضافة إلى ذلك، نبني مجموعة بيانات جديدة للتنبؤ بالتعاطف مع اتجاه التعاطف المحبوب الجميل، أو البحث عن أو توفير التعاطف، من تويتر.نطلق سراح DataSet لدينا لأغراض البحث.
Empathy is the link between self and others. Detecting and understanding empathy is a key element for improving human-machine interaction. However, annotating data for detecting empathy at a large scale is a challenging task. This paper employs multi-task training with knowledge distillation to incorporate knowledge from available resources (emotion and sentiment) to detect empathy from the natural language in different domains. This approach yields better results on an existing news-related empathy dataset compared to strong baselines. In addition, we build a new dataset for empathy prediction with fine-grained empathy direction, seeking or providing empathy, from Twitter. We release our dataset for research purposes.
المراجع المستخدمة
https://aclanthology.org/
يعد الكشف عن الموقف على Twitter تحديا بشكل خاص بسبب الطول القصير لكل سقسقة، والتعايش المستمر لمصطلحات جديدة وعلاج التصنيف، وانحراف هيكل الجملة من النثر القياسي.تم عرض نماذج لغة ذات ضبطها باستخدام بيانات داخل المجال على نطاق واسع لتكون الحالة الجديدة
تتمثل الوصفة الحالية لأداء نموذج أفضل داخل NLP في زيادة حجم نموذج البيانات والتدريب.في حين أن ذلك يعطينا نماذج مع نتائج رائعة بشكل متزايد، إلا أنها تجعل من الصعب تدريب ونشر نماذج أحدث ل NLP بسبب زيادة التكاليف الحاسوبية.ضغط النموذج هو مجال للبحث الذي
للحد من حجم النموذج ولكن الاحتفاظ بالأداء، كنا نعتمد في كثير من الأحيان على تقطير المعرفة (دينار كويتي) الذي ينقل المعرفة من نموذج المعلم الكبير إلى نموذج طالب أصغر. ومع ذلك، فإن KD على مجموعات بيانات متعددة الوسائط مثل مهام اللغة الرؤية غير مستكشفة
الكشف عن العلاقة في أسئلة المعرفة الأساسية الإجابة، تهدف إلى تحديد مسار (ق) العلاقات بدءا من عقدة كيان الموضوع المرتبطة بعقدة الإجابة في الرسم البياني للمعرفة. قد يتكون هذا المسار من علاقات متعددة، نسميه متعدد القفز. علاوة على ذلك، للحصول على سؤال وا
في هذه الورقة، نطبق تقطير المعرفة الذاتية لتلخيص النص الذي نقوله أنه يمكن أن يخفف من مشاكل في الحد الأقصى للتدريب احتمالية على مجموعات بيانات مرجعية واحدة وصاخبة.بدلا من الاعتماد على ملصقات توضيحية ذات ساخنة واحدة، يتم تدريب نموذج تلخيص الطلاب لدينا