ترغب بنشر مسار تعليمي؟ اضغط هنا

تعلم الحساب: نهج تضمين بسيط ولكنه فعال باستخدام الرسم البياني المعرفة

Learning Numeracy: A Simple Yet Effective Number Embedding Approach Using Knowledge Graph

392   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تلعب الحساب دورا رئيسيا في فهم اللغة الطبيعية.ومع ذلك، فإن نهج NLP الحالية، وليس فقط نهج Word2VEC التقليدي أو نماذج اللغة المستندة إلى المحولات السياقية، تفشل في تعلم الحساب.ونتيجة لذلك، فإن أداء هذه النماذج محدود عند تطبيقه على التطبيقات المكثفة في المجالات السريرية والمالية.في هذا العمل، نقترح نهج تضمين عدد بسيط بناء على الرسم البياني للمعرفة.نحن نبني رسم بياني للمعرفة يتكون من كيانات الأرقام وعلاقات الحجم.يتم بعد ذلك تطبيق طريقة تضمين الرسم البياني للمعرفة للحصول على ناقلات الرقم.نهجنا سهل التنفيذ، وتجربة نتائج التجربة على مختلف مهام NLP ذات الصلة بالكمال إظهار فعالية وكفاءة طريقتنا.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تعكس العلاقات في معظم الرسوم البيانية المعارف التقليدية (KGS) فقط الاتصالات الثابتة والواقعية، ولكنها تفشل في تمثيل الأنشطة الديناميكية وتغير الدولة حول الكيانات. في هذه الورقة، نؤكد على أهمية دمج الأحداث في تعلم تمثيل KG، واقتراح نموذج Eventke Event ke Eventke المحسن للحدث. على وجه التحديد، نظرا لل KG الأصلية، فإننا ندمج أول عقود حدث من خلال بناء شبكة غير متجانسة، حيث يتم توزيع العقد الكيانية وعقد الحدث على جانبي الشبكة بين روابط الوسيطة في الحدث. ثم نستخدم علاقات كيان الكيان من الروابط الزمنية KG والأحداث الزمنية الأصلية إلى الكيان والكيان الداخلي والوقت على التوالي. نقوم بتصميم طريقة تمرير رسائل مفيدة وتستند إلى الرواية، والتي يتم إجراؤها على كيان كيان وكيان الحدث وحدث الأحداث لفيد معلومات الحدث في AGBeddings KG. تظهر النتائج التجريبية على مجموعات البيانات في العالم الحقيقي أن الأحداث يمكن أن تحسن إلى حد كبير جودة AGEDDINGS KG على مهام متعددة المصب.
الحوار المرئي هو مهمة الإجابة على سلسلة من الأسئلة التي تأسست في صورة باستخدام سجل الحوار السابق كسياق. في هذه الورقة، ندرس كيفية معالجة تحديين أساسيين لهذه المهمة: (1) التفكير في الهياكل الدلالية الأساسية بين جولات الحوار و (2) تحديد العديد من الإجا بات المناسبة على السؤال المحدد. لمعالجة هذه التحديات، نقترح طريقة لتعليم الرسومات Sparse (SGL) لصياغة مربع حوار مرئي كهزم تعلم هيكل الرسم البياني. ينتشر SGL هياكل الحوار متناثرة بطبيعته من خلال دمج حواف ثنائية وتسهيل وظيفة فقدان هيكلية جديدة. بعد ذلك، نقدم طريقة نقل المعرفة (KT) التي تستخرج تنبؤات الإجابة من نموذج المعلم وتستخدمها باسم ملصقات زائفة. نقترح KT لعلاج أوجه القصور في ملصقات فردية واحدة للحقيقة، والتي تحد بشدة من قدرة نموذج للحصول على إجابات معقولة متعددة. نتيجة لذلك، يحسن نموذجنا المقترح بشكل كبير القدرة على التفكير مقارنة بطرق خط الأساس وتتفوق من الأساليب الحديثة على مجموعة بيانات V1.0 Versdial. يتوفر شفرة المصدر في https://github.com/gicheonkang/sglkt-visdial.
تمت دراسة Graph Basic Knowledge (SKG) (SKGE) بشكل مكثف في السنوات الماضية.في الآونة الأخيرة، ظهرت شركة الرسم البياني للمعرفة (TKG) (TKGE).في هذه الورقة، نقترح إطار عمل تضمين الحقائق الزمنية العودية (RTFE) لإجراء عمليات زراعة النماذج إلى TKGS وتعزيز أ داء نماذج TKGE الحالية لإكمال TKG.تختلف عن العمل السابق الذي يتجاهل استمرارية دول TKG في التطور الزمني، نتعامل مع تسلسل الرسوم البيانية كسلسلة ماركوف، والتي تحولات من الدولة السابقة إلى الحالة التالية.RTFE يأخذ Skge لتهيئة embedings of tkg.ثم تعقب Strefly State Tremition من TKG عن طريق تمرير المعلمات / ميزات محدثة بين الطوابع الزمنية.على وجه التحديد، في كل زمني، نقيب انتقال الدولة باعتباره عملية تحديث التدرج.نظرا لأن RTFE يتعلم كل طابع زمني متكرر، فيمكنه العبور بشكل طبيعي إلى الطوابع الزمنية المستقبلية.تجارب في خمس مجموعات بيانات TKG تظهر فعالية RTFE.
تم استكشاف Adment Graph Graph (KIGS) بشكل مكثف في السنوات الأخيرة بسبب وعدهم بمجموعة واسعة من التطبيقات. ومع ذلك، تركز الدراسات الحالية على تحسين أداء النموذج النهائي دون الاعتراف بالتكلفة الحسابية للنهج المقترحة، من حيث التنفيذ والتأثير البيئي. تقتر ح هذه الورقة إطار KGE بسيط ولكنه فعال يمكن أن يقلل من وقت التدريب وبصمة الكربون عن طريق أوامر من الأقواس مقارنة مع النهج الحديثة، مع إنتاج أداء تنافسي. نسلط الضوء على ثلاثة ابتكارات تقنية: التعلم الدفاعي الكامل عبر المصفوفات العلائقية، وتحليل العوامة المتعامدة المغلقة للملابس، والتدريب غير السلبي للأخذ العينات. بالإضافة إلى ذلك، كأول طريقة KGE الأولى التي تخزنها تضمين كيانها أيضا معلومات العلاقة الكاملة، ترمز النماذج المدربة لدينا إلى دلالات غنية ويمكن تفسيرها للغاية. تجارب شاملة ودراسات الاجتثاثات التي تنطوي على 13 خطوط بيانات قوية ومجموعات بيانات قياسية تحقق من فعالية وكفاءة خوارزميةنا.
توليد الحوار المكيف يعاني من ندرة الردود المسمى.في هذا العمل، استغلالنا بيانات نصية غير حوار مرتبطة بالشرط، والتي هي أسهل بكثير لجمعها.نقترح نهج تعليمي متعدد المهام للاستفادة من كل من الحوار والبيانات النصية المسمى.تقوم المهام الثلاثة بتحسين نفس مهمة توليد الحوار المحول مدببت مسبقا على بيانات الحوار المسمى، ومهمة ترميز اللغة مشروطة ومهمة توليد اللغة مشروطة على البيانات النصية المسمى.تظهر النتائج التجريبية أن نهجنا يتفوق على النماذج الحديثة من خلال الاستفادة من النصوص المسمى، كما أنه يحصل أيضا على تحسين أكبر في الأداء مقارنة بالطرق السابقة لاستفادة البيانات النصية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا