ترغب بنشر مسار تعليمي؟ اضغط هنا

المتمردين: استخراج العلاقة حسب جيل لغة نهاية إلى نهاية

REBEL: Relation Extraction By End-to-end Language generation

333   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تستخرف تستخرف توائم النص من النص الخام مهمة حاسمة في استخراج المعلومات، مما يتيح تطبيقات متعددة مثل ملء قواعد المعرفة أو التحقق من صحة المعرفة ومهام المصب الأخرى. ومع ذلك، فإنه عادة ما ينطوي عادة على خطوط أنابيب متعددة الخطوات التي تنتشر أخطاء أو تقتصر على عدد صغير من أنواع العلاقات. للتغلب على هذه القضايا، نقترح استخدام نماذج SEQ2SEQ AutoRegressive. لقد سبق أن ثبت أن هذه النماذج قد تؤدي بشكل جيد ليس فقط في توليد اللغة، ولكن أيضا في مهام NLU مثل ربط الكيان، بفضل تأطيرها كامرأة SEQ2SEQ. في هذه الورقة، نظهر كيف يمكن تبسيط استخراج العلاقات من خلال التعبير عن توابع توائم كسلسلة من النص، ونحن نقدم المتمردين، نموذج SEQ2SEQ يعتمد على BART يؤدي استخراج العلاقات الطرفية إلى نهاية لأكثر من 200 نوع من العلاقات المختلفة. نظهر مرونة نموذجنا من خلال ضبطه بشكل جيد على مجموعة من معايير استخراج العلاقات وعلاقة التصنيف، مع أنها تحقق أداء حديثة في معظمها.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يدقق هذا البرنامج التعليمي أحدث التقدم التقني في التحليل النحوي ودور بناء الجملة في مهام معالجة اللغة الطبيعية المناسبة (NLP)، حيث يتمثل الترجمة الدلالية في الدورات الدلالية (SRL) والترجمة الآلية (MT) المهام التي لديهاكان دائما مفيدا من أدلة النحوية الإعلامية منذ فترة طويلة، على الرغم من أن التقدم من طرازات التعلم العميق المنتهي في النهاية يظهر نتائج جديدة.في هذا البرنامج التعليمي، سنقدم أولا الخلفية وأحدث التقدم المحرز في التحليل النحوي و SRL / NMT.بعد ذلك، سنلخص الأدلة الرئيسية حول التأثيرات النحوية على هذين المهامين المتعلقين، واستكشاف الأسباب وراء كل من الخلفيات الحسابية واللغوية.
غالبا ما يتطلب فهم الروايات بالكامل من الأحداث في سياق المستندات بأكملها ونمذجة علاقات الحدث.ومع ذلك، فإن استخراج الأحداث على مستوى المستند هو مهمة صعبة لأنها تتطلب استخراج الحدث والكيان الأساسية، والتقاط الحجج التي تمتد عبر جمل مختلفة.تعمل الأعمال ا لموجودة على استخراج الأحداث عادة على استخراج الأحداث من جمل واحدة، والتي تفشل في التقاط العلاقات بين الحدث تذكر على نطاق المستند، وكذلك حجج الحدث التي تظهر في جملة مختلفة عن مشغل الحدث.في هذه الورقة، نقترح نماذج طراز نهاية إلى نهاية شبكات القيمة العميقة (DVN)، خوارزمية التنبؤ منظم، لالتقاط التبعيات عبر الأحداث بكفاءة لاستخراج الأحداث على مستوى المستند.تظهر النتائج التجريبية أن نهجنا يحقق أداء قابلا للمقارنة مع النماذج القائمة على CRF على ACE05، بينما تتمتع بكفاءة حسابية أعلى بكثير.
تفترض أن معظم الدراسات السابقة حول حالة المعلومات (IS) تصنيف وتجسير التعرف anaphora أن ذكر الذهب أو معلومات شجرة النحوية يتم إعطاء (Hou et al.، 2013؛ Roesiger et al.، 2018؛ هو، 2020؛ يو ويوسيو، 2020) وبعد في هذه الورقة، نقترح نهج عصبي نهاية إلى نهج ل تصنيف حالة المعلومات. يتكون نهجنا من مكون استخراج الأوراق ومكون مهمة لحالة المعلومات. خلال وقت الاستدلال، يأخذ نظامنا نصا الخام حيث أن المدخلات ويولد يشرح مع وضع المعلومات الخاصة بهم. على Corpus Isnotes (Markert et al.، 2012)، نوضح أن مكون تعيين حالة معلوماتنا يحقق نتائج جديدة من الفنادق الجديدة على الحبيبات الجميلة التصنيف بناء على طلب الذهب. علاوة على ذلك، يؤدي نظامنا أفضل بكثير من خطوط الأساس الأخرى لكلا من الاستخراج والحبوب الدقيق التصنيف في الإعداد النهائي. أخيرا، نطبق نظامنا على باشي (Roesiger، 2018) و SCICORP (Roesiger، 2016) للتعرف على الحسارة المرجعية. نجد أن نظامنا المنتهي بنا مدروسا على ISNOT يحقق نتائج تنافسية بشأن تجسيد التعرف على الحساب مقارنة بالنظام السابق الذي يعتمد على معلومات النحوية وتدرب على مجموعات البيانات داخل المجال (YU و Poesio ، 2020).
نقترح مشكلة جديدة في مجال التعلم المنتهي في نهاية الحوار الموجهة نحو الوظيفة (TOD)، حيث يحاكي نظام مربع الحوار وكيل استكشاف الأخطاء وإصلاحها يساعد المستخدم من خلال تشخيص مشكلتهم (على سبيل المثال، السيارة لا تبدأ).ترتكز حوارات هذه الحوار في مخططات الم خططات الموسيقية الخاصة بالمجال، والتي من المفترض أن يتبع الوكيل أثناء المحادثة.تعرض مهمتنا تحديات تقنية جديدة من أجل TOD العصبي، مثل التأريض على الكلام إلى مخطط الانسيابي دون عبوات صريحة، في إشارة إلى الصفحات اليدوية الإضافية عندما يطلب المستخدم سؤالا توضيحا، والقدرة على اتباع مخططات انسيابية غير مرئية في وقت الاختبار.نقوم بإصدار مجموعة بيانات (Flodial) تتكون من 2،738 مربعا على 12 نقطة مخاطرة مختلفة لاستكشاف الأخطاء وإصلاحها.نقوم أيضا بتصميم نموذج عصبي، FLONET، والذي يستخدم بنية توليد تعزز استرجاع لتدريب وكيل الحوار.تجد تجاربنا أن الألهام يمكن أن تفعل نقل طلقة صفرية إلى مخططات انسيابية غير مرئية، ويضع خط أساس قوي للبحث في المستقبل.
تتمثل النهج التقليدي في تحسين أداء نماذج ترجمة الكلام في النهاية (E2E-St) في الاستفادة من النسخ المصدر عبر التدريب المسبق والتدريب المشترك مع التعرف على الكلام التلقائي (ASR) ومهام الترجمة الآلية العصبية (NMT). ومع ذلك، نظرا لأن طرائق الإدخال مختلفة، فمن الصعب الاستفادة من نص لغة المصدر بنجاح. في هذا العمل، نركز على تقطير المعرفة على مستوى التسلسل (SEQKD) من نماذج NMT الخارجية القائمة على النصوص. للاستفادة من الإمكانات الكاملة لمعلومات اللغة المصدر، نقترحنا على الوراء SEQKD، SEQKD من نموذج NMT للخلف إلى المصدر. تحقيقا لهذه الغاية، نقوم بتدريب نموذج ثنائي اللغة E2E-St للتنبؤ بالصايات بمثابة مهمة مساعدة مع وحدة فك ترميز واحدة. يتم إنشاء الصيغة من الترجمات في Bitex عبر الترجمة مرة أخرى. ونحن نقترح مزيدا من SEQKD ثنائي الاتجاه حيث يتم دمج SEQKD من نماذج NMT إلى الأمام والخلف. تظهر التقييمات التجريبية على كل من النماذج التلقائية وغير اللاحنة التلقائية أن Seqkd في كل اتجاه يحسن باستمرار أداء الترجمة، والفعالية مكملة بغض النظر عن القدرات النموذجية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا