ترغب بنشر مسار تعليمي؟ اضغط هنا

استخراج الأحداث على مستوى المستند مع التعلم الفعال نهاية إلى نهاية التبعيات عبر الأحداث

Document-level Event Extraction with Efficient End-to-end Learning of Cross-event Dependencies

340   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

غالبا ما يتطلب فهم الروايات بالكامل من الأحداث في سياق المستندات بأكملها ونمذجة علاقات الحدث.ومع ذلك، فإن استخراج الأحداث على مستوى المستند هو مهمة صعبة لأنها تتطلب استخراج الحدث والكيان الأساسية، والتقاط الحجج التي تمتد عبر جمل مختلفة.تعمل الأعمال الموجودة على استخراج الأحداث عادة على استخراج الأحداث من جمل واحدة، والتي تفشل في التقاط العلاقات بين الحدث تذكر على نطاق المستند، وكذلك حجج الحدث التي تظهر في جملة مختلفة عن مشغل الحدث.في هذه الورقة، نقترح نماذج طراز نهاية إلى نهاية شبكات القيمة العميقة (DVN)، خوارزمية التنبؤ منظم، لالتقاط التبعيات عبر الأحداث بكفاءة لاستخراج الأحداث على مستوى المستند.تظهر النتائج التجريبية أن نهجنا يحقق أداء قابلا للمقارنة مع النماذج القائمة على CRF على ACE05، بينما تتمتع بكفاءة حسابية أعلى بكثير.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

استخراج الأحداث على مستوى المستند أمر بالغ الأهمية لمختلف مهام معالجة اللغة الطبيعية لتوفير معلومات منظمة.النهج الحالية عن طريق النمذجة المتسلسلة إهمال الهياكل المنطقية المعقدة للنصوص الطويلة.في هذه الورقة، نستفيد بين تفاعلات الكيان وتفاعلات الجملة خ لال المستندات الطويلة وتحويل كل وثيقة إلى رسم بياني غير مرمى غير مسبهب من خلال استغلال العلاقة بين الجمل.نقدم مجتمع الجملة لتمثيل كل حدث كشركة فرعية.علاوة على ذلك.توضح التجارب أن إطارنا يحقق نتائج تنافسية على الأساليب الحديثة على مجموعة بيانات استخراج الأحداث على مستوى الوثيقة على نطاق واسع.
تستخرف تستخرف توائم النص من النص الخام مهمة حاسمة في استخراج المعلومات، مما يتيح تطبيقات متعددة مثل ملء قواعد المعرفة أو التحقق من صحة المعرفة ومهام المصب الأخرى. ومع ذلك، فإنه عادة ما ينطوي عادة على خطوط أنابيب متعددة الخطوات التي تنتشر أخطاء أو تقت صر على عدد صغير من أنواع العلاقات. للتغلب على هذه القضايا، نقترح استخدام نماذج SEQ2SEQ AutoRegressive. لقد سبق أن ثبت أن هذه النماذج قد تؤدي بشكل جيد ليس فقط في توليد اللغة، ولكن أيضا في مهام NLU مثل ربط الكيان، بفضل تأطيرها كامرأة SEQ2SEQ. في هذه الورقة، نظهر كيف يمكن تبسيط استخراج العلاقات من خلال التعبير عن توابع توائم كسلسلة من النص، ونحن نقدم المتمردين، نموذج SEQ2SEQ يعتمد على BART يؤدي استخراج العلاقات الطرفية إلى نهاية لأكثر من 200 نوع من العلاقات المختلفة. نظهر مرونة نموذجنا من خلال ضبطه بشكل جيد على مجموعة من معايير استخراج العلاقات وعلاقة التصنيف، مع أنها تحقق أداء حديثة في معظمها.
يمكن أن أنظمة البحث عن المحادثة الناجحة تجربة تسوق طبيعية وتكيفية وتفاعلية لعملاء التسوق عبر الإنترنت. ومع ذلك، فإن بناء هذه الأنظمة من الصفر تواجه تحديات الكلمة الحقيقية من كل من مخطط المنتج / المعرفة غير الصحيحة ونقص بيانات حوار التدريب. في هذا الع مل، نقترح أولا Convechearch، ونظام بحث محادثة نهاية إلى نهاية يجمع عميقا من نظام الحوار مع البحث. إنه يرفع ملف تعريف النص لاسترداد المنتجات، وهو أكثر قوة ضد مخطط / معرفة المنتج غير الكاملة مقارنة باستخدام سمات المنتج وحدها. ثم نتطلع إلى عدم وجود تحديات البيانات من خلال اقتراح نهج نقل الكلام الذي يولد كلام الحوار باستخدام مربع الحوار الحالي من المجالات الأخرى، والاستفادة من بيانات سلوك البحث من تجارة التجزئة الإلكترونية. مع نقل الكلام، نقدم مجموعة بيانات جديدة للبحث عن محادثة للتسوق عبر الإنترنت. تبين التجارب أن طريقة نقل الكلام لدينا يمكن أن تحسن بشكل كبير من توفر بيانات الحوار التدريبية دون تحديد مصادر الحشد، وتفوق نظام البحث عن المحادثة بشكل كبير على أفضل خط الأساس اختباره.
نقترح مشكلة جديدة في مجال التعلم المنتهي في نهاية الحوار الموجهة نحو الوظيفة (TOD)، حيث يحاكي نظام مربع الحوار وكيل استكشاف الأخطاء وإصلاحها يساعد المستخدم من خلال تشخيص مشكلتهم (على سبيل المثال، السيارة لا تبدأ).ترتكز حوارات هذه الحوار في مخططات الم خططات الموسيقية الخاصة بالمجال، والتي من المفترض أن يتبع الوكيل أثناء المحادثة.تعرض مهمتنا تحديات تقنية جديدة من أجل TOD العصبي، مثل التأريض على الكلام إلى مخطط الانسيابي دون عبوات صريحة، في إشارة إلى الصفحات اليدوية الإضافية عندما يطلب المستخدم سؤالا توضيحا، والقدرة على اتباع مخططات انسيابية غير مرئية في وقت الاختبار.نقوم بإصدار مجموعة بيانات (Flodial) تتكون من 2،738 مربعا على 12 نقطة مخاطرة مختلفة لاستكشاف الأخطاء وإصلاحها.نقوم أيضا بتصميم نموذج عصبي، FLONET، والذي يستخدم بنية توليد تعزز استرجاع لتدريب وكيل الحوار.تجد تجاربنا أن الألهام يمكن أن تفعل نقل طلقة صفرية إلى مخططات انسيابية غير مرئية، ويضع خط أساس قوي للبحث في المستقبل.
تفترض أن معظم الدراسات السابقة حول حالة المعلومات (IS) تصنيف وتجسير التعرف anaphora أن ذكر الذهب أو معلومات شجرة النحوية يتم إعطاء (Hou et al.، 2013؛ Roesiger et al.، 2018؛ هو، 2020؛ يو ويوسيو، 2020) وبعد في هذه الورقة، نقترح نهج عصبي نهاية إلى نهج ل تصنيف حالة المعلومات. يتكون نهجنا من مكون استخراج الأوراق ومكون مهمة لحالة المعلومات. خلال وقت الاستدلال، يأخذ نظامنا نصا الخام حيث أن المدخلات ويولد يشرح مع وضع المعلومات الخاصة بهم. على Corpus Isnotes (Markert et al.، 2012)، نوضح أن مكون تعيين حالة معلوماتنا يحقق نتائج جديدة من الفنادق الجديدة على الحبيبات الجميلة التصنيف بناء على طلب الذهب. علاوة على ذلك، يؤدي نظامنا أفضل بكثير من خطوط الأساس الأخرى لكلا من الاستخراج والحبوب الدقيق التصنيف في الإعداد النهائي. أخيرا، نطبق نظامنا على باشي (Roesiger، 2018) و SCICORP (Roesiger، 2016) للتعرف على الحسارة المرجعية. نجد أن نظامنا المنتهي بنا مدروسا على ISNOT يحقق نتائج تنافسية بشأن تجسيد التعرف على الحساب مقارنة بالنظام السابق الذي يعتمد على معلومات النحوية وتدرب على مجموعات البيانات داخل المجال (YU و Poesio ، 2020).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا