نماذج اللغة التوليدية المدربة على كبيرة، يمكن لشركة Corga الإجابة على الأسئلة حول مرور عن طريق توليد استمرار المرجح للمقطع الذي يتبعه زوج سؤال / إجابة.ومع ذلك، تختلف معدلات الدقة اعتمادا على نوع السؤال المطروح.في هذه الورقة، نحتفظ بالمرور الثابت، واختبار مجموعة واسعة من أنواع الأسئلة، واستكشاف نقاط القوة والضعف في نموذج لغة GPT-3.نحن نقدم أسئلة المرور واختبارها كتحدي محدد لنماذج لغات أخرى.
Generative language models trained on large, diverse corpora can answer questions about a passage by generating the most likely continuation of the passage followed by a question/answer pair. However, accuracy rates vary depending on the type of question asked. In this paper we keep the passage fixed, and test with a wide variety of question types, exploring the strengths and weaknesses of the GPT-3 language model. We provide the passage and test questions as a challenge set for other language models.
المراجع المستخدمة
https://aclanthology.org/
على الرغم من تحقيق النتائج المشجعة، غالبا ما يعتقد أن نماذج توليد تعبير التعبير العصبي لا تفتقر إلى الشفافية.بركأنا نماذج اختيار النماذج المرجعية العصبية (RFS) لمعرفة إلى أي مدى يتم تعلم الميزات اللغوية التي تؤثر على شكل RE وأسرها نماذج RFS الحديثة.ت
تعرض GPT-3 قدرة تعليمية ملحوظة في السياق من نماذج اللغة واسعة النطاق (LMS) المدربين على مئات البيانات بمليارات النطاق. نحن هنا تعالج بعض المشكلات المتبقية أقل إبلاغ عن ورق GPT-3، مثل LM غير الإنجليزية، وعروض النماذج المختلفة الحجم، وتأثير التحسين الف
حققت الترجمة الآلية العصبية متعددة اللغات أداء ملحوظا من خلال تدريب نموذج ترجمة واحدة لغات متعددة.تصف هذه الورقة التقديم الخاص بنا (معرف الفريق: CFILT-IITB) لمكتب Multiindicmt: مهمة متعددة اللغات اللغوية في WAT 2021. نقوم بتدريب أنظمة NMT متعددة اللغ
نحن نحلل كيف يتعلم نموذج اللغة القائم على المحولات قواعد الشطرنج من البيانات النصية للألعاب المسجلة.نوضح كيف يمكن البحث عن كيفية القدرة النموذجية والعدد المتاح لبيانات التدريب التي تؤثر على نجاح تعلم نموذج اللغة بمساعدة مقاييس الشطرنج الخاصة.مع هذه ا
منطق العموم الزمني هي مهمة صعبة لأنها تتطلب المعرفة الزمنية عادة غير صريحة في النص.في هذا العمل، نقترح نموذج فرقة لسبب المنظمات الزمنية.يعتمد نموذجنا على تمثيلات سياقية مدربة مسبقا من نماذج اللغة القائمة على المحولات (IE، Bert)، وعلى مجموعة متنوعة من