أصبحت الرسوم البيانية المعرفة (KG) من الأهمية بمثابة الأهمية لإيواء أنظمة التوصية الحديثة مع القدرة على توليد مسارات التفكير القابلة للتتبع لشرح عملية التوصية.ومع ذلك، نادرا ما تعتبر البحث المسبق إخلاص التفسيرات المشتقة لتبرير عملية صنع القرار.إلى حد ما من معرفتنا، هذا هو أول عمل نماذج ويقيم التوصية القابلة للتفسير بأمانة في إطار التفكير KG.على وجه التحديد، نقترح المنطق العصبي لتوصية التوصية (LOGER) الشرح (Loger) عن طريق الاستفادة من القواعد المنطقية القابلة للتفسير لتوجيه عملية التفكير في المسار لتوليد التفسير.نقوم بتجربة ثلاثة مجموعات بيانات واسعة النطاق في مجال التجارة الإلكترونية، مما يدل على فعالية طريقتنا في تقديم توصيات عالية الجودة وكذلك التأكد من إخلاص التفسير المشتق.
Knowledge graphs (KG) have become increasingly important to endow modern recommender systems with the ability to generate traceable reasoning paths to explain the recommendation process. However, prior research rarely considers the faithfulness of the derived explanations to justify the decision-making process. To the best of our knowledge, this is the first work that models and evaluates faithfully explainable recommendation under the framework of KG reasoning. Specifically, we propose neural logic reasoning for explainable recommendation (LOGER) by drawing on interpretable logical rules to guide the path-reasoning process for explanation generation. We experiment on three large-scale datasets in the e-commerce domain, demonstrating the effectiveness of our method in delivering high-quality recommendations as well as ascertaining the faithfulness of the derived explanation.
المراجع المستخدمة
https://aclanthology.org/
غالبا ما يتطلب جيل النص الشرطي القيود المعجمية، أي الكلمات التي يجب أو لا ينبغي إدراجها في نص الإخراج. في حين أن الوصفة المهيمنة لجيل النظام الشرطي كانت نماذج لغوية متماثلة على نطاق واسع يتم تصويرها على بيانات التدريب الخاصة بمهام المهام، فإن مثل هذه
على الرغم من أن مسارات اهتمامات المستخدم التحول في الرسوم البيانية المعرفة (KGS) يمكن أن تستفيد أنظمة التوصية المحادثة (CRS)، فإن المنطق الصريح على KGS لم يتم النظر فيه بشكل جيد في CRS، بسبب مجمع المسارات عالية الجودة وغير كاملة.نقترح CRFR، والتي تقو
نحن نصف خسارة اهتمام مدفوع المستوى الذي يحسن التعميم التركيبي في المحللين الدلاليين.يعتمد نهجنا على الخسائر القائمة التي تشجع على خرائط الاهتمام في نماذج التسلسل العصبي إلى التسلسل لتقليد إخراج خوارزميات محاذاة الكلمة الكلاسيكية.حيث استخدم العمل السا
بالنسبة للمبرمجين، تعلم استخدام واجهات برمجة التطبيقات (واجهات برمجة التطبيق) لمكتبة البرمجيات أمرا مهما للغاية. يمكن لأدوات توصية API أن تساعد المطورين في استخدام واجهات برمجة التطبيقات من خلال التوصية باستخدام واجهات برمجة التطبيقات التي سيتم استخد
يمكن إلقاء العديد من الأسئلة المفتوحة على المشكلات بمثابة مهمة استقامة نصية، حيث يتم تسليم الإجابات السؤال والمرشح لتشكيل الفرضيات. ثم يحدد نظام ضمان الجودة إذا كان قواعد المعرفة الداعمة، التي تعتبر مباني محتملة، تنطوي على الفرضيات. في هذه الورقة، نح