غالبا ما يتطلب جيل النص الشرطي القيود المعجمية، أي الكلمات التي يجب أو لا ينبغي إدراجها في نص الإخراج. في حين أن الوصفة المهيمنة لجيل النظام الشرطي كانت نماذج لغوية متماثلة على نطاق واسع يتم تصويرها على بيانات التدريب الخاصة بمهام المهام، فإن مثل هذه النماذج لا تتعلم اتباع القيود الأساسية بشكل موثوق، حتى عند الإشراف على كميات كبيرة من الأمثلة الخاصة بمهام المهام وبعد نقترح فك التشفير العصبي، خوارزمية بسيطة ولكنها فعالة تمكن نماذج اللغة العصبية - تحت إشراف أو لا - لتوليد نص بطلاقة مع مرضية القيود المعقدة المعقدة. نهجنا قوي بعد كفاءة. يتعامل مع أي مجموعة من القيود المعجمية المعبرة تحت المنطق المسند، في حين أن وقت التشغيل مقاربها يعادل البحث عن شعاع التقليدية. تظهر النتائج التجريبية على أربعة معايير أن فك التشفير العصبي تتفوق على النهج السابقة، بما في ذلك الخوارزميات التي تتعامل مع مجموعة فرعية من قيودنا. علاوة على ذلك، نجد أن النماذج غير الخاضعة للكشف عن فك التشفير العصبي في كثير من الأحيان تفوق النماذج الخاضعة للإشراف مع فك التشفير التقليدي، حتى عندما تستند الأخير إلى شبكات أكبر بكثير. تشير نتائجنا إلى حد الشبكات العصبية واسعة النطاق لتوليد القابل للتحكم بالقلق ووعد خوارزميات وقت الاستقدمية.
Conditional text generation often requires lexical constraints, i.e., which words should or shouldn't be included in the output text. While the dominant recipe for conditional text generation has been large-scale pretrained language models that are finetuned on the task-specific training data, such models do not learn to follow the underlying constraints reliably, even when supervised with large amounts of task-specific examples. We propose NeuroLogic Decoding, a simple yet effective algorithm that enables neural language models -- supervised or not -- to generate fluent text while satisfying complex lexical constraints. Our approach is powerful yet efficient. It handles any set of lexical constraints that is expressible under predicate logic, while its asymptotic runtime is equivalent to conventional beam search. Empirical results on four benchmarks show that NeuroLogic Decoding outperforms previous approaches, including algorithms that handle a subset of our constraints. Moreover, we find that unsupervised models with NeuroLogic Decoding often outperform supervised models with conventional decoding, even when the latter is based on considerably larger networks. Our results suggest the limit of large-scale neural networks for fine-grained controllable generation and the promise of inference-time algorithms.
المراجع المستخدمة
https://aclanthology.org/
الجيل السردي هو مهمة NLP مفتوحة العضوية التي يولد فيها نموذج قصة إعطاء موجه.المهمة تشبه توليد الاستجابة العصبية لل Chatbots؛ومع ذلك، غالبا ما لا يتم تطبيق الابتكارات في توليد الاستجابة على جيل سرد، على الرغم من التشابه بين هذه المهام.نحن نهدف إلى سد
أصبحت الرسوم البيانية المعرفة (KG) من الأهمية بمثابة الأهمية لإيواء أنظمة التوصية الحديثة مع القدرة على توليد مسارات التفكير القابلة للتتبع لشرح عملية التوصية.ومع ذلك، نادرا ما تعتبر البحث المسبق إخلاص التفسيرات المشتقة لتبرير عملية صنع القرار.إلى حد
وقد مكن التحول إلى النماذج العصبية في إحالة الجيل التعبير (REG) المزيد من النماذج الطبيعية، ولكن بتكلفة الترجمة الترجمة الشفوية.نجاد بأن دمج المنطق العملي في استنتاج نماذج التوليد غير المرجعية للسياق يمكن أن يتجاوز سمات REG التقليدية والعملية، لأن هذ
نقترح مهمة مشتركة على اختيار مثيل التدريب لعدد قليل من الجيل العصبي العصبي.أدت نماذج اللغة المحددة مسبقا على نطاق واسع إلى تحسينات مثيرة في جيل نص قليل.ومع ذلك، فإن كل العمل السابق تقريبا يطبق ما عليك سوى أخذ عينات عشوائية لتحديد مثيلات التدريب القلي
تعتمد معظم نماذج الترجمة الآلية العصبية الحالية ترتيب فك التشفير الرخيصي إما من اليسار إلى اليمين أو اليمين إلى اليسار.في هذا العمل، نقترح طريقة رواية تنفصل قيود أوامر فك التشفير هذه، تسمى فك تشفير الذكية.وبشكل أكثر تحديدا، تتوقع طريقةنا أولا كلمة مت