ترغب بنشر مسار تعليمي؟ اضغط هنا

التعميم التركيبي لتحليل الدلالي العصبي عبر الاهتمام بالإشراف على مستوى

Compositional Generalization for Neural Semantic Parsing via Span-level Supervised Attention

656   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نحن نصف خسارة اهتمام مدفوع المستوى الذي يحسن التعميم التركيبي في المحللين الدلاليين.يعتمد نهجنا على الخسائر القائمة التي تشجع على خرائط الاهتمام في نماذج التسلسل العصبي إلى التسلسل لتقليد إخراج خوارزميات محاذاة الكلمة الكلاسيكية.حيث استخدم العمل السابق محاذاة على مستوى الكلمات، ونحن نركز على يمتد؛اقتراض الأفكار من الترجمة الآلية القائمة على العبارة، نحن محاذاة السكتة الدلالية في تبييل الدلالي إلى امتداد جمل المدخلات، وتشجيع آليات الاهتمام العصبي لتقليد هذه المحاذاة.تعمل هذه الطريقة على تحسين أداء المحولات، RNNs، والكفران الهيكلية على ثلاثة معايير للتعميم التركيبي.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

على الرغم من تطبيق نماذج التسلسل العصبي للتسلسل بنجاح على التحليل الدلالي، إلا أنها تفشل في التعميم التركيبي، أي أنها غير قادرة على التعميم بشكل منهجي لتركيبات غير مرئية من مكونات المشاهدة. بدافع من التحليل الدلالي التقليدي حيث يتم احتساب التركيز بشك ل صريح من قبل النحو الرمزي، نقترح إطار فك التشفير الجديد الذي يحافظ على التعبير عن النماذج والعمومية من نماذج التسلسل إلى التسلسل مع تضم محاذاة على غرار المعجم ومعالجة المعلومات المنفذة. على وجه التحديد، نقوم بتحلل فك التشفير في مرحلتين حيث يتم وضع علامة على حامل الإدخال أولا مع رموز الدلالية التي تمثل معنى الكلمات الفردية، ثم يتم استخدام نموذج تسلسل إلى تسلسل للتنبؤ بتصميم تمثيل المعنى النهائي على الكلام والعلامة المتوقعة تسلسل. النتائج التجريبية على ثلاث مجموعات بيانات تحليل الدلالات توضح أن النهج المقترح يحسن باستمرار التعميم التركيبي عبر الهندسة النموذجية والنطاقات والإضفاءات الدلالية.
AM تحليل التبعية هي طريقة لتحليل الرسم البياني الدلالي العصبي الذي يستغل مبدأ التركيبية.على الرغم من أن محلل التبعية، فقد تبين أن محلل التبعية سريعة ودقيقة عبر العديد من الرسوم البيانية، فإنها تتطلب عبائيات صريحة لهياكل الأشجار التركيبية للتدريب.في ا لماضي، تم الحصول على هؤلاء استخدام الاستدلال المعقدة من الرسوم المشتركة من قبل الخبراء.هنا نظهر كيف يمكن تدريبهم بدلا من ذلك مباشرة على الرسوم البيانية مع نموذج متغير كامنة عصبي، مما يقلل بشكل كبير من كمية وتعقيد الاستدلال اليدوي.نوضح أن نموذجنا يلتقط العديد من الظواهر اللغوية بمفرده وتحقق دقة مماثلة للتدريب الخاضع للإشراف، مما يسهل بشكل كبير استخدام تحليل التبعية لشبانس جديدة.
في هذه الورقة، نقترح نموذجا طبيعيا عالميا لتحليل القواعد النحوية الخالية من السياق (CFG).بدلا من التنبؤ باحتمال، يتوقع نموذجنا درجة حقيقية في كل خطوة ولا تعاني من مشكلة تحيز التسمية.تظهر التجارب أن نهجنا تفوق النماذج الطبيعية محليا على مجموعات البيان ات الصغيرة، لكنها لا تسفر عن تحسن على مجموعة بيانات كبيرة.
في التطبيقات العملية للجدل الدلالي، نريد في كثير من الأحيان تغيير سلوك المحلل بسرعة، مثل تمكينه من التعامل مع الاستعلامات في مجال جديد، أو تغيير تنبؤاتها على بعض الاستفسارات المستهدفة. على الرغم من أنه يمكننا إدخال أمثلة تدريبية جديدة تظهر السلوك الم ستهدف، فإن آلية سن تغييرات السلوكية دون إعادة تدريب طراز باهظ الثمن سيكون أفضل. تحقيقا لهذه الغاية، نقترح المحلل الدلالي القابل للتحكم عبر استرجاع Exemplar (Casper). نظرا لاستعلام المدخلات، يسترد المحلل تحليل الخرزات ذات الصلة من مؤشر استرجاع، ويعززها إلى الاستعلام، ثم يطبق نموذج SEQ2SEQ Generative لإنتاج تحليل إخراج. تعمل EXEMPLARS كآلية مراقبة على النموذج العام العام: من خلال معالجة مؤشر الاسترجاع أو كيفية إنشاء الاستعلام المعزز، يمكننا معالجة سلوك المحلل المحلل. على مجموعة بيانات MTOP، بالإضافة إلى تحقيق أحدث من الفن في الإعداد القياسي، نظهر أن كاسبر يمكن أن تحليل الاستعلامات في مجال جديد، أو تكييف التنبؤ باتجاه الأنماط المحددة، أو التكيف مع مخططات الدلالات الجديدة دون الحاجة إلى الحاجة إلى مزيد من إعادة تدريب النموذج.
البحث عن وثائق قانونية هي مهمة متخصصة لاسترجاع المعلومات ذات الصلة لمستخدمي الخبراء (المحامين ومساعدتهم) وللمستخدمين غير الخبراء. من خلال البحث في قرارات المحكمة السابقة (الحالات)، يمكن للمستخدم إعداد التفكير القانوني بشكل أفضل من حالة جديدة. القدرة على البحث باستخدام تقطيع نص لغة طبيعية بدلا من استعلام مزيد من الاستعلام الاصطناعي قد يساعد في منع مشكلات صياغة الاستعلام. أيضا، إذا كان التشابه الدلالي قد يكون على غرار المطابقات المعجمية الدقيقة، فيمكن العثور على نتائج أكثر صلة حتى لو كانت شروط الاستعلام لا تتطابق تماما. بالنسبة لهذا المجال، صاغنا مهمة لمقارنة الطرق المختلفة لنمذجة التشابه الدلالي على مستوى الفقرة، باستخدام النظم العصبية وغير العصبية. قارنا أنظمة تشفير الاستعلام وفقرات مجموعة البحث كمنتجات، مما يتيح استخدام تشابه التجميل لتحقيق تصنيف النتائج. بعد بناء مجموعة بيانات ألمانية للحالات والنظام الأساسي من سويسرا، واستخراج الاستشهادات من الحالات إلى النظام الأساسي، قمنا بتطوير خوارزمية لتقدير التشابه الدلالي على مستوى الفقرة، باستخدام طريقة التشابه القائمة على الرابط. عند تقييم الأنظمة المختلفة بهذه الطريقة، نجد أن النمذجة الدلالية التشابه بواسطة النظم العصبية يمكن أن يتم تعزيز قناع اهتمام ممتد يروي الضوضاء في المدخلات.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا