ألهمت البحوث اللغوية الحسابية على تغيير اللغة من خلال نماذج التوزيع الدلالي (DS) باحثين من مجالات مثل الفلسفة والدراسات الأدبية، الذين يستخدمون هذه الأساليب لاستكشاف ومقارنة مجموعات البيانات الصغيرة النسبية نسبيا تحليلها تقليديا عن طريق القراءة الدقيقة.لا يزال البحث في أساليب البيانات الصغيرة في المراحل المبكرة وليس من الواضح الطرق التي تحقق أفضل النتائج.نحن نبحث في إمكانيات وقيود استخدام النماذج الدلالية التوزيعية لتحليل البيانات الفلسفية عن طريق حالة استخدام واقعية.نحن نقدم حقيقة أرضية للتقييم التي أنشأتها خبراء الفلسفة ومخطط لاستخدام نماذج DS في إعداد منهجي سليم.نقارن ثلاث طرق لإنشاء نماذج متخصصة من مجموعات البيانات الصغيرة.على الرغم من أن النماذج لا تؤدي بشكل جيد بما يكفي لدعم الفلاسفة مباشرة، إلا أننا نجد أن النماذج المصممة لإنتاج البيانات الصغيرة واعدة في العمل في المستقبل.
Computational linguistic research on language change through distributional semantic (DS) models has inspired researchers from fields such as philosophy and literary studies, who use these methods for the exploration and comparison of comparatively small datasets traditionally analyzed by close reading. Research on methods for small data is still in early stages and it is not clear which methods achieve the best results. We investigate the possibilities and limitations of using distributional semantic models for analyzing philosophical data by means of a realistic use-case. We provide a ground truth for evaluation created by philosophy experts and a blueprint for using DS models in a sound methodological setup. We compare three methods for creating specialized models from small datasets. Though the models do not perform well enough to directly support philosophers yet, we find that models designed for small data yield promising directions for future work.
المراجع المستخدمة
https://aclanthology.org/
استكشف البحث المسبق قدرة النماذج الحسابية للتنبؤ بكلمة ملائمة للكلمة مع مسند معين. في حين تم تخصيص الكثير من العمل لنمذجة العلاقة النموذجية بين الأفعال والحجج بمعزل، في هذه الورقة، نأخذ منظور أوسع من خلال تقييم ما إذا كانت النهج الحسابية أو إلى أي مد
في هذه الورقة مقارنة أداء ثلاث نماذج: SGNS (أخذ العينات السلبية Skip-Gram) والإصدارات المعززة من SVD (تحلل القيمة المفرد) و PPMI (معلومات متبادلة إيجابية) على مهمة تشابه كلمة.نحن نركز بشكل خاص على دور ضبط فرط التشعيم من أجل الهندية القائمة على التوصي
تبسيط النص هو حقل متزايد مع العديد من التطبيقات المفيدة المحتملة.تتطلب خوارزميات تبسيط النص التدريب عموما الكثير من البيانات المشروحة، ومع ذلك لا توجد العديد من الشركات المناسبة لهذه المهمة.نقترح طريقة جديدة غير مخالفة لمحاذاة النص بناء على تضمين Doc
تهدف استخراج العلاقات القائم على الحوار (إعادة) إلى استخراج العلاقة بين الحججتين التي تظهر في حوار. نظرا لأن الحوارات لديها خصائص حوادث الضمير الشخصية العالية وكثافة المعلومات المنخفضة، وبما أن معظم الحقائق العلائقية في الحوارات لا تدعمها أي جملة واح
لترجيل اللغة المنطوقة إلى المتوسطة المكتوبة، تمكن معظم الحروف الهجائية قاعدة صوتية لا لبس فيها.ومع ذلك، فقد نأت بعض أنظمة الكتابة أنفسهم من هذا المفهوم البسيط والعمل القليل من العمل في معالجة اللغة الطبيعية (NLP) على قياس المسافة.في هذه الدراسة، نستخ