ترغب بنشر مسار تعليمي؟ اضغط هنا

نحو التعلم المستمر للترجمة الآلية متعددة اللغات عبر استبدال المفردات

Towards Continual Learning for Multilingual Machine Translation via Vocabulary Substitution

360   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نقترح مخطط تكييف المفردات المباشر لتوسيع نطاق القدرة اللغوية لنماذج الترجمة متعددة اللغات، مما يمهد الطريق نحو التعلم المستمر الفعال للترجمة الآلية متعددة اللغات.نهجنا مناسب لمجموعات البيانات واسعة النطاق، ينطبق على اللغات البعيدة مع البرامج النصية غير المرئية، وتحتل التدهور البسيط فقط على أداء الترجمة لأزواج اللغة الأصلية ويوفر أداء تنافسي حتى في الحالة التي نمتلك فيها بيانات أحادية الألوان فقط للغات الجديدة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نماذج الترجمة الآلية العصبية (NMT) هي مدفوعة بالبيانات وتتطلب كوربوس تدريب واسع النطاق. في التطبيقات العملية، عادة ما يتم تدريب نماذج NMT على مجال مجال عام ثم يتم ضبطه بشكل جيد من خلال التدريب المستمر على Corpus في المجال. ومع ذلك، فإن هذا يحمل خطر ا لنسيان الكارثي الذي ينخفض ​​فيه الأداء الموجود على المجال العام بشكل كبير. في هذا العمل، نقترح إطارا تعليميا مستمرا جديدا لنماذج NMT. نحن نعتبر سيناريو حيث يتألف التدريب من مراحل متعددة واقتراح تقنية تقطير معارف ديناميكية لتخفيف مشكلة النسيان الكارثي بشكل منهجي. نجد أيضا أن التحيز موجود في الإسقاط الخطي الإخراج عند ضبط جيد على Corpus في المجال، واقترح وحدة تصحيح التحيز للقضاء على التحيز. نقوم بإجراء تجارب في ثلاثة إعدادات تمثيلية لتطبيق NMT. تظهر النتائج التجريبية أن الطريقة المقترحة تحقق أداء فائقا مقارنة بالنماذج الأساسية في جميع الإعدادات.
عنصر رئيسي واحد من الترجمة الآلية العصبية هو استخدام مجموعات البيانات الكبيرة من المجالات والموارد المختلفة (E.G. Europarl، TED محادثات).تحتوي مجموعات البيانات هذه على مستندات مترجمة من قبل المترجمين المحترفين باستخدام أنماط الترجمة المختلفة ولكن ثاب تة.على الرغم من ذلك، عادة ما يتم تدريب النموذج بطريقة لا يجسد صراحة مجموعة متنوعة من أنماط الترجمة الموجودة في البيانات ولا تترجم بيانات جديدة في أنماط مختلفة ويمكن التحكم فيها.في هذا العمل، نحقق في طرق زيادة حالة نموذج محول الفن مع معلومات المترجم المتوفرة جزئيا من بيانات التدريب.نظرا لأن نماذج الترجمة المعززة بأسلوبنا قادرة على التقاط الاختلافات النمط للمترجمين وإنشاء ترجمات مع أنماط مختلفة على البيانات الجديدة.في الواقع، تختلف الاختلافات التي تم إنشاؤها بشكل كبير، ما يصل إلى فرق النتيجة +4.5 بلو.على الرغم من ذلك، يؤكد التقييم البشري أن الترجمات من نفس النوعية.
تقترح هذه الورقة تقنية لإضافة مصدر جديد أو لغة مستهدفة إلى نموذج NMT متعدد اللغات الحالي دون إعادة تدريبه في المجموعة الأولية للغات.وهي تتألف في استبدال المفردات المشتركة مع المفردات الصغيرة الخاصة باللغة ولقلها تضمين المدينات الجديدة على البيانات ال متوازية باللغة الجديدة.قد يتم تدريب بعض المكونات الإضافية الخاصة باللغة على تحسين الأداء (مثل طبقات المحولات أو وحدات المحولات).لأن معلمات النموذج الأصلي لا يتم تعديلها، فإن أدائها على اللغات الأولية لا تتحلل.نظهر على مجموعتين من التجارب (نطاق صغير على محادثات تيد، واسعة النطاق على الباراسراول) أن هذا النهج ينفذ كذلك أو أفضل كمادة أكثر تكلفة؛وأنه يحتوي على أداء ممتازة للصفر: التدريب على البيانات المرن الإنجليزية يكفي للترجمة بين اللغة الجديدة وأي من اللغات الأولية.
عادة ما يتم تكليف الترجمة الآلية العصبية متعددة الموارد (MNMT) بتحسين أداء الترجمة على أزواج لغة واحدة أو أكثر بمساعدة أزواج لغة الموارد عالية الموارد.في هذه الورقة، نقترح اثنين من المناهج البحث البسيطة القائمة على البحث - طلب بيانات التدريب المتعدد اللغات - والتي تساعد على تحسين أداء الترجمة بالاقتران مع التقنيات الحالية مثل الضبط الدقيق.بالإضافة إلى ذلك، نحاول تعلم منهجا من المناهج الدراسية من MNMT من الصفر بالاشتراك مع تدريب نظام الترجمة باستخدام قطاع الطرق متعددة الذراع السياقية.نعرض على مجموعة بيانات الترجمة المنخفضة من Flores التي يمكن أن توفر هذه المناهج المستفادة نقاطا أفضل للضبط وتحسين الأداء العام لنظام الترجمة.
تصف هذه الورقة أن الأنظمة المقدمة إلى المهمة المشتركة Wat 2021 Multiindicmt بواسطة فريق IITP-MT.نحن نقدم اثنين من أنظمة الترجمة الآلية العصبية متعددة اللغات (NMT) (Inster-to-English والإنجليزية إلى MEDER).ننهي جميع بيانات MED وتخلق المفردات الفرعية ا لتي يتم مشاركتها بين جميع لغات ISS.نحن نستخدم نهج الترجمة الخلفي لتوليد البيانات الاصطناعية التي يتم إلحاقها بالتوازي Corpus وتستخدم لتدريب نماذجنا.يتم تقييم النماذج باستخدام درجات Bleu و Libes و AMFM مع نموذج MEDER-To-To-English يحقق 40.08 Bleu للزوج الهندي والإنجليزي ونموذج اللغة الإنجليزية إلى MERS لتحقيق 34.48 بلو للزوج باللغة الإنجليزية الهندية.ومع ذلك، نلاحظ أن مفردات الكلمة الفرعية المشتركة لا تساعد النموذج الإنجليزي إلى التروس في وقت الجيل، مما أدى إلى إنتاج ترجمات ذات نوعية رديئة للتاميل والتيلجو وميلايالام إلى أزواج باللغة الإنجليزية مع درجة بلو 8.51 و 6.25 و 3.79على التوالى.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا