ترغب بنشر مسار تعليمي؟ اضغط هنا

التعلم المستمر للترجمة الآلية العصبية

Continual Learning for Neural Machine Translation

377   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نماذج الترجمة الآلية العصبية (NMT) هي مدفوعة بالبيانات وتتطلب كوربوس تدريب واسع النطاق. في التطبيقات العملية، عادة ما يتم تدريب نماذج NMT على مجال مجال عام ثم يتم ضبطه بشكل جيد من خلال التدريب المستمر على Corpus في المجال. ومع ذلك، فإن هذا يحمل خطر النسيان الكارثي الذي ينخفض ​​فيه الأداء الموجود على المجال العام بشكل كبير. في هذا العمل، نقترح إطارا تعليميا مستمرا جديدا لنماذج NMT. نحن نعتبر سيناريو حيث يتألف التدريب من مراحل متعددة واقتراح تقنية تقطير معارف ديناميكية لتخفيف مشكلة النسيان الكارثي بشكل منهجي. نجد أيضا أن التحيز موجود في الإسقاط الخطي الإخراج عند ضبط جيد على Corpus في المجال، واقترح وحدة تصحيح التحيز للقضاء على التحيز. نقوم بإجراء تجارب في ثلاثة إعدادات تمثيلية لتطبيق NMT. تظهر النتائج التجريبية أن الطريقة المقترحة تحقق أداء فائقا مقارنة بالنماذج الأساسية في جميع الإعدادات.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تعتمد معظم نماذج الترجمة الآلية العصبية الحالية ترتيب فك التشفير الرخيصي إما من اليسار إلى اليمين أو اليمين إلى اليسار.في هذا العمل، نقترح طريقة رواية تنفصل قيود أوامر فك التشفير هذه، تسمى فك تشفير الذكية.وبشكل أكثر تحديدا، تتوقع طريقةنا أولا كلمة مت وسط.يبدأ فك شفرة الكلمات الموجودة على الجانب الأيمن من الكلمة المتوسطة ثم يولد كلمات على اليسار.نحن نقيم طريقة فك التشفير الذكية المقترحة على ثلاث مجموعات البيانات.تظهر النتائج التجريبية أن الطريقة المقترحة يمكن أن تتفوق بشكل كبير على النماذج الأساسية القوية.
حققت الترجمة الآلية العصبية غير الخاضعة للرقابة (UNMT) التي تعتمد فقط على Glassive Monolingual Corpora نتائج ملحوظة في العديد من مهام الترجمة.ومع ذلك، في سيناريوهات العالم الواقعي، لا توجد سورانيا أحادية الأبعاد الضخمة لبعض لغات الموارد المنخفضة للغا ية مثل أنظمة الإستونية، وعادة ما تؤدي أنظمة بعثة الأمم المتحدة في غرة الأبراج بشكل سيئ عندما لا يكون هناك كائنات تدريب كافية لغات واحدة.في هذه الورقة، نقوم أولا بتحديد وتحليل سيناريو البيانات التدريبية غير المتوازنة لإدارة بروتوكولية الكونغراف.استنادا إلى هذا السيناريو، نقترح آليات التدريب الذاتي لجهاز مكافآت لتدريب نظام INMT قوي وتحسين أدائها في هذه الحالة.تظهر النتائج التجريبية على العديد من أزواج اللغة أن الأساليب المقترحة تتفوق بشكل كبير على نظم التعطيب التقليدية.
نقترح مخطط تكييف المفردات المباشر لتوسيع نطاق القدرة اللغوية لنماذج الترجمة متعددة اللغات، مما يمهد الطريق نحو التعلم المستمر الفعال للترجمة الآلية متعددة اللغات.نهجنا مناسب لمجموعات البيانات واسعة النطاق، ينطبق على اللغات البعيدة مع البرامج النصية غ ير المرئية، وتحتل التدهور البسيط فقط على أداء الترجمة لأزواج اللغة الأصلية ويوفر أداء تنافسي حتى في الحالة التي نمتلك فيها بيانات أحادية الألوان فقط للغات الجديدة.
الترجمة الآلية العصبية (NMT) حساسة لتحويل المجال. في هذه الورقة، نتعامل مع هذه المشكلة في إعداد تعليمي نشط حيث يمكننا أن نقضي ميزانية معينة في ترجمة البيانات داخل المجال، وتصفح تدريجيا نموذج NMT خارج المجال المدرب مسبقا على البيانات المترجمة حديثا. ع ادة ما تختار طرق التعلم النشطة الحالية ل NMT الجمل بناء على درجات عدم اليقين، ولكن هذه الأساليب تتطلب ترجمة مكلفة للجمل الكاملة حتى عندما تكون عبارات واحدة أو اثنين فقط في الجملة مفيدة. لمعالجة هذا القيد، نعيد فحص العمل السابق من حقبة الترجمة الآلية القائمة على العبارة (PBMT) التي حددت جمل كاملة، ولكن العبارات الفردية إلى حد ما. ومع ذلك، في حين أن دمج هذه العبارات في أنظمة PBMT كانت بسيطة نسبيا، إلا أنها أقل تافهة لأنظمة NMT، والتي يجب تدريبها على تسلسل كامل لالتقاط خصائص هيكلية أكبر للجمل الفريدة للمجال الجديد. للتغلب على هذه العقبات، نقترح تحديد كلا الجمل الكاملة والعبارات الفردية من البيانات غير المسبقة في المجال الجديد للتوجيه إلى المترجمين البشريين. في مهمة ترجمة باللغة الألمانية-الإنجليزية، تحقق نهج التعلم النشط لدينا تحسينات متسقة حول أساليب اختيار الجملة القائمة على عدم اليقين، وتحسين ما يصل إلى 1.2 نتيجة بلو على خطوط خطوط التعلم النشطة قوية.
أثبتت الترجمة الآلية النموذجية على مستوى المستند (NMT) أنها ذات قيمة عميقة لفعاليتها في التقاط المعلومات السياقية. ومع ذلك، فإن الأساليب الحالية 1) تعرض ببساطة تمثيل أحكام السياق دون تمييز عملية التفكير بين الجملة؛ و 2) تغذية السياقات المستهدفة في ال حقيقة كدخلات إضافية في وقت التدريب، وبالتالي تواجه مشكلة تحيز التعرض. ونحن نقترب من هذه المشاكل مع إلهام من السلوك البشري - المترجمين البشري يظهر عادة مشروع ترجمة في أذهانهم وتنقيحها تدريجيا وفقا للمنطق في الخطاب. تحقيقا لهذه الغاية، نقترح محول رواية متعددة القفز (MHT) الذي يوفر قدرات NMT على نموذج عملية التحرير والتفكير الذي يشبه الإنسان بشكل صريح. على وجه التحديد، يخدم نموذجنا الترجمة على مستوى الجملة كمسودة ويحدد خصوصياتها بشكل صحيح من خلال حضور جمل متعددة غير متجانسة تكرارا. توضح التجارب على أربعة مهام ترجمة مستندات مستعملة على نطاق واسع أن طريقتنا يمكن أن تحسن بشكل كبير من أداء الترجمة على مستوى المستندات ويمكنها معالجة ظواهر الخطاب، مثل خطأ COMARACARE ومشكلة Polysemy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا