نحن نعمل على تعميم فكرة قياس التحيزات الاجتماعية في Word Ageddings لإضاءة Word بصريا. الحياز موجودة في المدينات المتطرفة، ويبدو أنها بالفعل أكثر أهمية أو أكثر أهمية من المدمج غير المقصود. هذا على الرغم من حقيقة أن الرؤية واللغة يمكن أن تعاني من تحيزات مختلفة، والذي قد يأمل المرء أن يخفف من التحيزات في كليهما. توجد طرق متعددة لتعميم التحيز القياسي القياسي في Word Ageddings لهذا الإعداد الجديد. نقدم مساحة التعميمات (Weat-Weat-Weat and Grounded) وإظهار أن ثلاث تعميمات تجيب على أسئلة مختلفة لكنها مهمة حول كيفية تفاعل التحيزات واللغة والرؤية. يتم استخدام هذه المقاييس في مجموعة بيانات جديدة، الأول من أجل التحيز الأساسي، الذي تم إنشاؤه عن طريق زيادة معايير التحيز اللغوي القياسي مع 10228 صورة من كوكو، والتسمية التوضيحية المفاهيمية، وصور جوجل. بناء البيانات يتحدى لأن مجموعات بيانات الرؤية هي نفسها منحازة للغاية. سيبدأ وجود هذه التحيزات في الأنظمة في الحصول على عواقب عالمية حقيقية حيث يتم نشرها، مما يجعلها تقيس التحيز بعناية ثم تخفيفها بالغ الأهمية لبناء مجتمع عادل.
We generalize the notion of measuring social biases in word embeddings to visually grounded word embeddings. Biases are present in grounded embeddings, and indeed seem to be equally or more significant than for ungrounded embeddings. This is despite the fact that vision and language can suffer from different biases, which one might hope could attenuate the biases in both. Multiple ways exist to generalize metrics measuring bias in word embeddings to this new setting. We introduce the space of generalizations (Grounded-WEAT and Grounded-SEAT) and demonstrate that three generalizations answer different yet important questions about how biases, language, and vision interact. These metrics are used on a new dataset, the first for grounded bias, created by augmenting standard linguistic bias benchmarks with 10,228 images from COCO, Conceptual Captions, and Google Images. Dataset construction is challenging because vision datasets are themselves very biased. The presence of these biases in systems will begin to have real-world consequences as they are deployed, making carefully measuring bias and then mitigating it critical to building a fair society.
المراجع المستخدمة
https://aclanthology.org/
لا تزال التحيزات منتشرة في النصوص والإعلام الحديث، وخاصة التحيز الذاتي - نوع خاص من التحيز الذي يقدم مواقف غير لائقة أو يقدم بيان مع افتراض الحقيقة. لمعالجة مشكلة الكشف عن التحيز الذاتي والتخفيف، نقدم كوربايا موازية مشروح يدويا مع أكثر من 4000 زوجا م
تحيز قياس التجريدي هو المفتاح لفهم أفضل ومعالجة الظلم في نماذج NLP / ML.غالبا ما يتم ذلك عبر مقاييس الإنصاف، مما يحدد الاختلافات في سلوك النموذج عبر مجموعة من المجموعات الديموغرافية.في هذا العمل، ألقينا المزيد من الضوء على الاختلافات وتشابه التشابه ب
تهدف العبارة الأساسية إلى تعيين العبارات النصية إلى مناطق الصور المرتبطة بها، والتي يمكن أن تكون شرطا أساسيا لسبب متعدد الوسائط ويمكن أن تستفيد المهام التي تتطلب تحديد الكائنات القائمة على اللغة. مع تحقيق نماذج للرؤية واللغة المدربة مسبقا أداء مثير ل
تستخدم Word Embeddings على نطاق واسع في معالجة اللغة الطبيعية (NLP) لمجموعة واسعة من التطبيقات. ومع ذلك، فقد ثبت باستمرار أن هذه المدينات تعكس نفس التحيزات البشرية الموجودة في البيانات المستخدمة لتدريبها. معظم مؤشرات التحيز المنصوص عليها للكشف عن تحي
يلعب الكشف التلقائي باللغة السامة دورا أساسيا في حماية مستخدمي الوسائط الاجتماعية، وخاصة مجموعات الأقليات، من الإساءة اللفظية.ومع ذلك، فإن التحيزات تجاه بعض الصفات، بما في ذلك النوع الاجتماعي والعرق واللهجة، موجودة في معظم مجموعات البيانات التدريبية