تعلم أنظمة الحوار الموجهة نحو المهمة الحديثة نموذجا من الحوارات المشروح، وتحول هذه الحوارات بدورها يتم جمعها وتفاحها بحيث تكون متسقة مع معرفة مجال معينة. ومع ذلك، في السيناريوهات الحقيقية، تخضع معارف المجال للتغييرات المتكررة، وقد تصبح حوارات التدريب الأولي قد تصبح عفا عليها الزمن، مما يؤدي إلى انخفاض كبير في الأداء النموذجي. في هذه الورقة، نحقق في العلاقة بين الحوارات التدريبية ومعرفة المجال، واقتراح تكيف مجال الحوار، وهي منهجية تهدف إلى تكييف حوارات التدريب الأولي للتغييرات تدخلت في معرفة المجال. نحن نركز على تغييرات قيمة الفتحة (على سبيل المثال، عندما تتوفر قيم فتحة جديدة لوصف كيانات المجال) وتحديد إعداد تجريبي لتتكيف مع نطاق الحوار. أولا، نوضح أن النماذج الحالية للحالة لتتبع حالة الحوار لا تزال قوية تقريبا للتغيرات ذات قيمة الفتحة لمعرفة المجال. بعد ذلك، نقارن استراتيجيات مختلفة التكيف عن نطاق التكيف، مما يدل على أن التقنيات البسيطة فعالة لتقليل الفجوة بين حوارات التدريب ومعرفة المجال.
Recent task-oriented dialogue systems learn a model from annotated dialogues, and such dialogues are in turn collected and annotated so that they are consistent with certain domain knowledge. However, in real scenarios, domain knowledge is subject to frequent changes, and initial training dialogues may soon become obsolete, resulting in a significant decrease in the model performance. In this paper, we investigate the relationship between training dialogues and domain knowledge, and propose Dialogue Domain Adaptation, a methodology aiming at adapting initial training dialogues to changes intervened in the domain knowledge. We focus on slot-value changes (e.g., when new slot values are available to describe domain entities) and define an experimental setting for dialogue domain adaptation. First, we show that current state-of-the-art models for dialogue state tracking are still poorly robust to slot-value changes of the domain knowledge. Then, we compare different domain adaptation strategies, showing that simple techniques are effective to reduce the gap between training dialogues and domain knowledge.
المراجع المستخدمة
https://aclanthology.org/
يتطلب تحسين سياسة الحوار عبر التعلم التعزيز عددا كبيرا من التفاعلات التدريبية، مما يجعل التعلم مع المستخدمين الحقيقيين الوقت المستهلكة ومكلفة. لذلك يعتمد العديد من الإعدادات على محاكاة المستخدم بدلا من البشر. لدى محاكاة المستخدم هذه مشاكلهم الخاصة. ف
في أنظمة الحوار الموجهة نحو الأهداف، يقدم المستخدمون المعلومات من خلال قيم الفتحة لتحقيق أهداف محددة. عمليا، يمكن أن تكون بعض مجموعات قيم الفتحة غير صالحة وفقا للمعرفة الخارجية. على سبيل المثال، مزيج من بيتزا الجبن "(عنصر القائمة) وملفات تعريف الارتب
يسمح التعلم المستمر في أنظمة الحوار الموجهة نحو المهام للنظام بإضافة مجالات ووظائف جديدة للعمل الإضافي بعد النشر، دون تكبد التكلفة العالية لإعادة النظر في النظام بأكمله في كل مرة. في هذه الورقة، نقترح أول معيار تعلم مستمر على الإطلاق لأنظمة الحوار ال
تهدف هذه الورقة إلى تقديم نظرة عامة شاملة للتطورات الأخيرة في تتبع حكمة الحوار (DST) لأنظمة المحادثات الموجهة نحو المهام.نقدم المهمة، وخاصة البيانات الرئيسية التي تم استغلالها وكذلك مقاييس تقييمها، ونحن نحلل العديد من النهج المقترحة.نحن نميز بين نماذ
نقدم إطار جيل الحوار الاصطناعي، Velocidapter، الذي يعالج مشكلة توافر Corpus لفهم الحوار. DEVERSITS VELOCIDAPTER DEDASTS من خلال محاكاة المحادثات الاصطناعية مجال حوار موجه نحو المهام، تتطلب كمية صغيرة من أعمال Bootstrapping لكل مجال جديد. نحن نقيم فعا