ترغب بنشر مسار تعليمي؟ اضغط هنا

COMPONER: TAGGER خفيفة الوزن الكل في واحد Tagger، محلل التبعية و NER

ComboNER: A Lightweight All-In-One POS Tagger, Dependency Parser and NER

292   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تركز معالجة اللغة الطبيعية الحالية بقوة على زيادة الدقة.يأتي التقدم بتكلفة نماذج فائقة الثقيلة مع مئات الملايين أو حتى مليارات المعلمات.ومع ذلك، فإن المهام النحوية البسيطة مثل وضع العلامات على جزء من الكلام (POS) أو تحليل التبعية أو التعرف على الكيان المسمى (NER) لا تحتاج إلى أكبر النماذج لتحقيق نتائج مقبولة.تمشيا مع هذا الافتراض، نحاول تقليل حجم النموذج الذي ينفذ بشكل مشترك جميع المهام الثلاثة.نقدم Comboner: أداة خفيفة الوزن، أوامر ذات حجم أصغر من المحولات الحديثة.يعتمد على مدمج الكلمات الفرعية المدربة مسبقا بنية الشبكة العصبية المتكررة.يعمل COMBONER على بيانات اللغة البولندية.يحتوي النموذج على مخرجات لوضع العلامات على نقاط البيع والتحليل التبعية و NER.تحتوي ورقةنا على بعض الأفكار من ضبط النموذج الدقيق والتقارير عن نتائجها الإجمالية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تتضمن النهج الحديثة لإملاء مشكلة تصحيح الأخطاء الإملائي نماذج SEQ2SEQ القائمة على المحولات، والتي تتطلب مجموعات تدريبية كبيرة وتعاني من وقت الاستدلال البطيء؛وتسلسل نماذج وضع التسلسل المستندة إلى ترميز المحولات مثل بيرت، والتي تنطوي على مساحة تسمية ال مستوى المميز وبالتالي قاموس مفردات محددة مسبقا مسبقا.في هذه الورقة، نقدم طراز Tagger Tagner التسلسل الهرمي، أو HCTAGGER، لتصحيح الأخطاء الإملائي في النص القصير.نستخدم نموذج لغة مدرب مسبقا على مستوى الحرف كتشفير نصي، ثم يتوقع تحرير مستوى الأحرف لتحويل النص الأصلي إلى شكل خالي من الأخطاء مع مساحة تسمية أصغر بكثير.للحصول على فك التشفير، نقترح نهجا هرميا متعدد المهام للتخفيف من مسألة توزيع الملصقات الطويلة الذيل دون تقديم معلمات نموذجية إضافية.تثبت التجارب في مجموعات بيانات تصحيح أخطاء الأخشاب العامة أن HCTAGGER هو نهج دقيق وأسرع بكثير من العديد من النماذج الموجودة.
نحن تصف تقديم DCU-EPFL إلى مهمة مشتركة IWPT 2021: من النص الخام لتعزيز التبعيات العالمية. تتضمن المهمة تحليل الرسوم البيانية UD المحسنة، والتي تعد امتدادا لأشجار التبعية الأساسية المصممة لتكون أكثر تسهيلا نحو تمثيل الهيكل الدلالي. يتم التقييم على 29 شجرة Treebanks في 17 لغة ومطلوبة للمشاركين لتحليل البيانات من كل لغة تبدأ من السلاسل الخام. يستخدم نهجنا خط أنابيب Stanza لمعالجة الملفات النصية، XLM-Roberta للحصول على تمثيلات رمزية في السياق، ونموذج تسجيل الحافة والعلامات للتنبؤ الرسم البياني المحسن. أخيرا، ندير نص PostProcessing لضمان جميع مخرجاتنا هي الرسوم البيانية UD المحسنة سارية المفعول. يضع نظامنا السادس من أصل 9 مشاركا مع درجة مرفق محسنة خشنة (ELAS) 83.57. نقوم بإجراء تجارب إضافية بعد الموعد النهائي والتي تشمل استخدام Trankit لمعالجة ما قبل المعالجة، XLM-Roberta Large Protectenation، وتعلم المتعدد التعلم بين محلل التبعية الأساسية والمعززة. جميع هذه التعديلات تحسن النتيجة الأولية ونظامنا النهائي لديه إيلاس خشن 88.04.
إن الانتعاش الدقيق لهيكل الوسائد الواسع من تحليل الاعتماد العالمي (UD) هو أساسي لمهام المصب مثل استخراج الأدوار الدلالية أو تمثيلات الأحداث. تقدم هذه الدراسة على المستحسن، تصنيف التسلسل الهرمي لعلاقات التبعية المستدلة الموجودة داخل تحليل UD. بمثابة د قة تصنيف Compchain بمثابة وكيل لقياس الانتعاش الدقيق لهيكل الوسائد المسند من الجمل مع التضمين. لقد قمنا بتحليل توزيع الملاحظة في Three Treebanks English English، EWT، اللثة والخطوط، وكشف أن هذه Treebanks متناثرة فيما يتعلق بالجمل مع هيكل الوسائد المسند يتضمن تضمين حجة مسند. قمنا بتقييم نماذج خط الأساس SPIPE (V1.2) Conll 2018 (V1.2) الأساس (COMPCHAIN) كمعقل كمبيوتر يعمل بنظام EWT و Gums and Lines UD Treebanks. تشير نتائجنا إلى أن هذه النماذج الأساسية الثلاثة تظهر الأداء الأكثر فقرا في الجمل مع هيكل الوسائد الواسع مع أكثر من مستوى من التضمين؛ استخدمنا Comprains لتوصيف الأخطاء التي تم إجراؤها بواسطة هذه المحللين وتقديم الأمثلة الحالية للضرائب الخاطئة التي تنتجها المحلل المحلل المحدد باستخدام المركبات. لقد قمنا أيضا بتحليل توزيع Comprains في 58 UDBanks UD UDBanks غير الإنجليزية ثم استخدمت Comprains لتقييم نموذج خط الأساس المشترك CONLL'18 لكل من هذه Treebanks. يوضح تحليلنا أن الأداء فيما يتعلق بتصنيف كمبيوتر يحترم ضعيفا ضعيفا فقط مع مقاييس التقييم الرسمية (LAS، MLAS و Blex). نحدد الثغرات في توزيع العقائد في العديد من UD Treebanks، وبالتالي توفير خارطة طريق لكيفية استكمال هذه Treebanks. نستنتج من خلال مناقشة كيفية توفر Comprains منظورا جديدا حول Sparsity بيانات التدريب لمحلل UD، وكذلك دقة تبييض UD الناتج.
نحن تصف محلول Nuig لمهمة IWPT 2021 بمهمة التعبير المعزز (ED) معزز بلغات متعددة.بالنسبة لهذه المهمة المشتركة، نقترح وتقييم محلل إد المحلي المستند SEQ2SEQ SEQ2SEQ ومقرها SEQ2SEQ الذي يتنبأ بمجموعة ED-Parse من جملة مدخلات معينة كأسلسلة موضعية موضعية للن موذج النسبي.نموذجنا المقترح هو شبكة عصبية متعددة الاستخدامات تؤدي خمس مهام رئيسية في وقت واحد وهي وضع علامات UPOS، ووضع العلامات UFEAT، والليمون، والتحليل التبعية والحد من التحليل.علاوة على ذلك، نستخدم النموذج اللغوي المتاح في قاعدة بيانات Wals لتحسين قدرة محللنا المحترفين المقترحين على الانتقال عبر اللغات.تشير النتائج إلى أن SEQ2SEQ ED-Parser المقترح لدينا يؤدي على قدم المساواة مع محلل ED-Art-Art على الرغم من وجود علامة أبسط.
تشمل اللغة البشرية أكثر من مجرد نص؛كما أنه ينقل العواطف من خلال النغمة والإيماءات.نقدم دراسة حالة لثلاث هندسة بسيطة وفعالة قائمة على المحولات لتنبؤ المعنويات والعاطفة في البيانات متعددة الوسائط.يقوم نموذج الانصهار المتأخر بدمج ميزات Unimodal لإنشاء ت سلسل ميزة متعددة الوسائط، يجمع نموذج Robin Robin بشكل متكرر بين ميزات BIMODAL باستخدام اهتماما عبر الوسائط، ويجمع نموذج الانصهار الهجين بين ميزات Trimodal و Unimodal معا لتشكيل تسلسل مائع نهائي للتنبؤ بالمشاعر.تبين تجاربنا أن نماذجنا الصغيرة فعالة ومتفوقة على الإصدارات التي تم إصدارها علنا من أنظمة تحليل المعنويات متعددة الوسائط الأكبر والحديثة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا